source: trunk/kernel/kern/thread.c @ 480

Last change on this file since 480 was 473, checked in by alain, 6 years ago

Fix several GCC warning related to the -Wextra compilation option.

File size: 41.8 KB
RevLine 
[1]1/*
2 * thread.c -  implementation of thread operations (user & kernel)
[171]3 *
[1]4 * Author  Ghassan Almaless (2008,2009,2010,2011,2012)
[23]5 *         Alain Greiner (2016,2017)
[1]6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
[5]9 * This file is part of ALMOS-MKH.
[1]10 *
[5]11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
[1]12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
[5]15 * ALMOS-MKH is distributed in the hope that it will be useful, but
[1]16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
[5]21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
[1]22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[457]26#include <hal_kernel_types.h>
[1]27#include <hal_context.h>
28#include <hal_irqmask.h>
29#include <hal_special.h>
30#include <hal_remote.h>
31#include <memcpy.h>
32#include <printk.h>
33#include <cluster.h>
34#include <process.h>
35#include <scheduler.h>
[188]36#include <dev_pic.h>
[1]37#include <core.h>
38#include <list.h>
39#include <xlist.h>
40#include <page.h>
41#include <kmem.h>
42#include <ppm.h>
43#include <thread.h>
[446]44#include <rpc.h>
[1]45
46//////////////////////////////////////////////////////////////////////////////////////
47// Extern global variables
48//////////////////////////////////////////////////////////////////////////////////////
49
50extern process_t      process_zero;
51
52//////////////////////////////////////////////////////////////////////////////////////
[16]53// This function returns a printable string for the thread type.
[1]54//////////////////////////////////////////////////////////////////////////////////////
[5]55char * thread_type_str( uint32_t type )
56{
[296]57    if     ( type == THREAD_USER   ) return "USR";
[16]58    else if( type == THREAD_RPC    ) return "RPC";
59    else if( type == THREAD_DEV    ) return "DEV";
[296]60    else if( type == THREAD_IDLE   ) return "IDL";
[5]61    else                             return "undefined";
62}
63
[1]64/////////////////////////////////////////////////////////////////////////////////////
[14]65// This static function allocates physical memory for a thread descriptor.
66// It can be called by the three functions:
[1]67// - thread_user_create()
[14]68// - thread_user_fork()
[1]69// - thread_kernel_create()
70/////////////////////////////////////////////////////////////////////////////////////
[14]71// @ return pointer on thread descriptor if success / return NULL if failure.
[1]72/////////////////////////////////////////////////////////////////////////////////////
[14]73static thread_t * thread_alloc()
[1]74{
[23]75        page_t       * page;   // pointer on page descriptor containing thread descriptor
[171]76        kmem_req_t     req;    // kmem request
[1]77
78        // allocates memory for thread descriptor + kernel stack
79        req.type  = KMEM_PAGE;
[14]80        req.size  = CONFIG_THREAD_DESC_ORDER;
[1]81        req.flags = AF_KERNEL | AF_ZERO;
82        page      = kmem_alloc( &req );
83
[23]84        if( page == NULL ) return NULL;
[1]85
[315]86    // return pointer on new thread descriptor
87    xptr_t base_xp = ppm_page2base( XPTR(local_cxy , page ) );
[469]88    return GET_PTR( base_xp );
[315]89
90}  // end thread_alloc()
91 
92
[14]93/////////////////////////////////////////////////////////////////////////////////////
[23]94// This static function releases the physical memory for a thread descriptor.
[53]95// It is called by the three functions:
[23]96// - thread_user_create()
97// - thread_user_fork()
98// - thread_kernel_create()
99/////////////////////////////////////////////////////////////////////////////////////
100// @ thread  : pointer on thread descriptor.
101/////////////////////////////////////////////////////////////////////////////////////
102static void thread_release( thread_t * thread )
103{
104    kmem_req_t   req;
105
[315]106    xptr_t base_xp = ppm_base2page( XPTR(local_cxy , thread ) );
107
[23]108    req.type  = KMEM_PAGE;
[315]109    req.ptr   = GET_PTR( base_xp );
[23]110    kmem_free( &req );
111}
112
113/////////////////////////////////////////////////////////////////////////////////////
[14]114// This static function initializes a thread descriptor (kernel or user).
[438]115// It can be called by the four functions:
[14]116// - thread_user_create()
117// - thread_user_fork()
118// - thread_kernel_create()
[438]119// - thread_idle_init()
120// It updates the local DQDT.
[14]121/////////////////////////////////////////////////////////////////////////////////////
122// @ thread       : pointer on thread descriptor
123// @ process      : pointer on process descriptor.
124// @ type         : thread type.
125// @ func         : pointer on thread entry function.
126// @ args         : pointer on thread entry function arguments.
127// @ core_lid     : target core local index.
128// @ u_stack_base : stack base (user thread only)
129// @ u_stack_size : stack base (user thread only)
130/////////////////////////////////////////////////////////////////////////////////////
131static error_t thread_init( thread_t      * thread,
132                            process_t     * process,
133                            thread_type_t   type,
134                            void          * func,
135                            void          * args,
136                            lid_t           core_lid,
137                            intptr_t        u_stack_base,
138                            uint32_t        u_stack_size )
139{
140    error_t        error;
141    trdid_t        trdid;      // allocated thread identifier
142
143        cluster_t    * local_cluster = LOCAL_CLUSTER;
144
[443]145#if DEBUG_THREAD_USER_INIT
146uint32_t cycle = (uint32_t)hal_get_cycles();
147if( DEBUG_THREAD_USER_INIT < cycle )
148printk("\n[DBG] %s : thread %x enter to init thread %x in process %x / cycle %d\n",
149__FUNCTION__, CURRENT_THREAD, thread, process->pid , cycle );
150#endif
151
[14]152    // register new thread in process descriptor, and get a TRDID
[1]153    error = process_register_thread( process, thread , &trdid );
154
[171]155    if( error )
[1]156    {
[14]157        printk("\n[ERROR] in %s : cannot get TRDID\n", __FUNCTION__ );
158        return EINVAL;
[1]159    }
[14]160
[407]161    // compute thread descriptor size without kernel stack
162    uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; 
163
[1]164        // Initialize new thread descriptor
165    thread->trdid           = trdid;
[171]166        thread->type            = type;
[1]167    thread->quantum         = 0;            // TODO
168    thread->ticks_nr        = 0;            // TODO
[457]169    thread->time_last_check = 0;            // TODO
[1]170        thread->core            = &local_cluster->core_tbl[core_lid];
171        thread->process         = process;
172
173    thread->local_locks     = 0;
[409]174    thread->remote_locks    = 0;
[1]175
[409]176#if CONFIG_LOCKS_DEBUG
177    list_root_init( &thread->locks_root ); 
[1]178    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
[409]179#endif
[1]180
[171]181    thread->u_stack_base    = u_stack_base;
[1]182    thread->u_stack_size    = u_stack_size;
[407]183    thread->k_stack_base    = (intptr_t)thread + desc_size;
184    thread->k_stack_size    = CONFIG_THREAD_DESC_SIZE - desc_size;
[1]185
186    thread->entry_func      = func;         // thread entry point
187    thread->entry_args      = args;         // thread function arguments
[171]188    thread->flags           = 0;            // all flags reset
[1]189    thread->errno           = 0;            // no error detected
[407]190    thread->fork_user       = 0;            // no user defined placement for fork
191    thread->fork_cxy        = 0;            // user defined target cluster for fork
[409]192    thread->blocked         = THREAD_BLOCKED_GLOBAL;
[1]193
[440]194    // reset sched list
[1]195    list_entry_init( &thread->sched_list );
196
197    // reset thread info
198    memset( &thread->info , 0 , sizeof(thread_info_t) );
199
[409]200    // initializes join_lock
201    remote_spinlock_init( XPTR( local_cxy , &thread->join_lock ) );
202
[1]203    // initialise signature
204        thread->signature = THREAD_SIGNATURE;
205
[443]206    // FIXME define and call an architecture specific hal_thread_init()
207    // function to initialise the save_sr field
[408]208    thread->save_sr = 0xFF13;
209
[171]210    // register new thread in core scheduler
[1]211    sched_register_thread( thread->core , thread );
212
[438]213        // update DQDT
214    dqdt_update_threads( 1 );
215
[443]216#if DEBUG_THREAD_USER_INIT
217cycle = (uint32_t)hal_get_cycles();
218if( DEBUG_THREAD_USER_INIT < cycle )
219printk("\n[DBG] %s : thread %x exit  after init of thread %x in process %x / cycle %d\n",
220__FUNCTION__, CURRENT_THREAD, thread, process->pid , cycle );
221#endif
222
[1]223        return 0;
224
[296]225} // end thread_init()
226
[1]227/////////////////////////////////////////////////////////
[23]228error_t thread_user_create( pid_t             pid,
229                            void            * start_func,
230                            void            * start_arg,
[1]231                            pthread_attr_t  * attr,
[23]232                            thread_t       ** new_thread )
[1]233{
234    error_t        error;
235        thread_t     * thread;       // pointer on created thread descriptor
236    process_t    * process;      // pointer to local process descriptor
237    lid_t          core_lid;     // selected core local index
[23]238    vseg_t       * vseg;         // stack vseg
[1]239
[407]240    assert( (attr != NULL) , __FUNCTION__, "pthread attributes must be defined" );
[5]241
[438]242#if DEBUG_THREAD_USER_CREATE
[433]243uint32_t cycle = (uint32_t)hal_get_cycles();
[438]244if( DEBUG_THREAD_USER_CREATE < cycle )
[457]245printk("\n[DBG] %s : thread %x in process %x enter in cluster %x / cycle %d\n",
246__FUNCTION__, CURRENT_THREAD->trdid, pid , local_cxy , cycle );
[433]247#endif
[428]248
[23]249    // get process descriptor local copy
250    process = process_get_local_copy( pid );
[440]251
[23]252    if( process == NULL )
253    {
254                printk("\n[ERROR] in %s : cannot get process descriptor %x\n",
255               __FUNCTION__ , pid );
256        return ENOMEM;
257    }
258
[443]259#if( DEBUG_THREAD_USER_CREATE & 1)
260if( DEBUG_THREAD_USER_CREATE < cycle )
261printk("\n[DBG] %s : process descriptor = %x for process %x in cluster %x\n",
262__FUNCTION__, process , pid , local_cxy );
263#endif
264
[171]265    // select a target core in local cluster
[407]266    if( attr->attributes & PT_ATTR_CORE_DEFINED )
[23]267    {
[407]268        core_lid = attr->lid;
269        if( core_lid >= LOCAL_CLUSTER->cores_nr )
270        {
271                printk("\n[ERROR] in %s : illegal core index attribute = %d\n",
272            __FUNCTION__ , core_lid );
273            return EINVAL;
274        }
[23]275    }
[407]276    else
277    {
278        core_lid = cluster_select_local_core();
279    }
[1]280
[443]281#if( DEBUG_THREAD_USER_CREATE & 1)
282if( DEBUG_THREAD_USER_CREATE < cycle )
283printk("\n[DBG] %s : core[%x,%d] selected\n",
284__FUNCTION__, local_cxy , core_lid );
285#endif
286
[171]287    // allocate a stack from local VMM
[407]288    vseg = vmm_create_vseg( process,
289                            VSEG_TYPE_STACK,
290                            0,                 // size unused
291                            0,                 // length unused
292                            0,                 // file_offset unused
293                            0,                 // file_size unused
294                            XPTR_NULL,         // mapper_xp unused
295                            local_cxy );
[1]296
[170]297    if( vseg == NULL )
[23]298    {
299            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
300                return ENOMEM;
[171]301    }
[23]302
[457]303#if( DEBUG_THREAD_USER_CREATE & 1)
304if( DEBUG_THREAD_USER_CREATE < cycle )
305printk("\n[DBG] %s : stack vseg created / vpn_base %x / %d pages\n",
306__FUNCTION__, vseg->vpn_base, vseg->vpn_size );
307#endif
308
[171]309    // allocate memory for thread descriptor
[14]310    thread = thread_alloc();
[1]311
[23]312    if( thread == NULL )
313    {
314            printk("\n[ERROR] in %s : cannot create new thread\n", __FUNCTION__ );
315        vmm_remove_vseg( vseg );
316        return ENOMEM;
317    }
[14]318
[443]319#if( DEBUG_THREAD_USER_CREATE & 1)
320if( DEBUG_THREAD_USER_CREATE < cycle )
[457]321printk("\n[DBG] %s : new thread descriptor %x allocated\n",
[443]322__FUNCTION__, thread );
323#endif
324
[171]325    // initialize thread descriptor
[14]326    error = thread_init( thread,
327                         process,
328                         THREAD_USER,
[23]329                         start_func,
330                         start_arg,
[14]331                         core_lid,
[23]332                         vseg->min,
333                         vseg->max - vseg->min );
[171]334    if( error )
[14]335    {
[23]336            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
337        vmm_remove_vseg( vseg );
338        thread_release( thread );
[14]339        return EINVAL;
340    }
341
[443]342#if( DEBUG_THREAD_USER_CREATE & 1)
343if( DEBUG_THREAD_USER_CREATE < cycle )
[457]344printk("\n[DBG] %s : new thread descriptor initialised / trdid %x\n",
345__FUNCTION__, thread->trdid );
[443]346#endif
347
[14]348    // set DETACHED flag if required
[407]349    if( attr->attributes & PT_ATTR_DETACH ) 
350    {
351        thread->flags |= THREAD_FLAG_DETACHED;
352    }
[1]353
[171]354    // allocate & initialize CPU context
[457]355        if( hal_cpu_context_alloc( thread ) )
[23]356    {
357            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
358        vmm_remove_vseg( vseg );
359        thread_release( thread );
360        return ENOMEM;
361    }
[457]362    hal_cpu_context_init( thread );
[23]363
[457]364    // allocate & initialize FPU context
[407]365    if( hal_fpu_context_alloc( thread ) )
[23]366    {
367            printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ );
368        vmm_remove_vseg( vseg );
369        thread_release( thread );
370        return ENOMEM;
371    }
[457]372    hal_fpu_context_init( thread );
[23]373
[457]374#if( DEBUG_THREAD_USER_CREATE & 1)
375if( DEBUG_THREAD_USER_CREATE < cycle )
376printk("\n[DBG] %s : CPU & FPU contexts created\n",
377__FUNCTION__, thread->trdid );
378vmm_display( process , true );
379#endif
380
[438]381#if DEBUG_THREAD_USER_CREATE
[433]382cycle = (uint32_t)hal_get_cycles();
[438]383if( DEBUG_THREAD_USER_CREATE < cycle )
[457]384printk("\n[DBG] %s : thread %x in process %x exit / new_thread %x / core %d / cycle %d\n",
385__FUNCTION__, CURRENT_THREAD->trdid , pid, thread->trdid, core_lid, cycle );
[433]386#endif
[1]387
388    *new_thread = thread;
389        return 0;
[14]390
[296]391}  // end thread_user_create()
392
[408]393///////////////////////////////////////////////////////
394error_t thread_user_fork( xptr_t      parent_thread_xp,
395                          process_t * child_process,
396                          thread_t ** child_thread )
[1]397{
398    error_t        error;
[408]399        thread_t     * child_ptr;        // local pointer on local child thread
400    lid_t          core_lid;         // selected core local index
[1]401
[408]402    thread_t     * parent_ptr;       // local pointer on remote parent thread
403    cxy_t          parent_cxy;       // parent thread cluster
404    process_t    * parent_process;   // local pointer on parent process
405    xptr_t         parent_gpt_xp;    // extended pointer on parent thread GPT
[5]406
[408]407    void         * func;             // parent thread entry_func
408    void         * args;             // parent thread entry_args
409    intptr_t       base;             // parent thread u_stack_base
410    uint32_t       size;             // parent thread u_stack_size
411    uint32_t       flags;            // parent_thread flags
412    vpn_t          vpn_base;         // parent thread stack vpn_base
413    vpn_t          vpn_size;         // parent thread stack vpn_size
414    reg_t        * uzone;            // parent thread pointer on uzone 
415
416    vseg_t       * vseg;             // child thread STACK vseg
417
[438]418#if DEBUG_THREAD_USER_FORK
[433]419uint32_t cycle = (uint32_t)hal_get_cycles();
[438]420if( DEBUG_THREAD_USER_FORK < cycle )
[469]421printk("\n[DBG] %s : thread %x in process %x enter / child_process %x / cycle %d\n",
422__FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, child_process->pid, cycle );
[433]423#endif
[408]424
[1]425    // select a target core in local cluster
426    core_lid = cluster_select_local_core();
427
[408]428    // get cluster and local pointer on parent thread descriptor
429    parent_cxy = GET_CXY( parent_thread_xp );
[469]430    parent_ptr = GET_PTR( parent_thread_xp );
[1]431
[408]432    // get relevant fields from parent thread
[428]433    func  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_func    ));
434    args  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_args    ));
435    base  = (intptr_t)hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->u_stack_base  ));
436    size  = (uint32_t)hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->u_stack_size  ));
437    flags =           hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->flags         ));
438    uzone = (reg_t *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->uzone_current ));
[1]439
[408]440    vpn_base = base >> CONFIG_PPM_PAGE_SHIFT;
441    vpn_size = size >> CONFIG_PPM_PAGE_SHIFT;
442
443    // get pointer on parent process in parent thread cluster
444    parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy,
445                                                        &parent_ptr->process ) );
446 
447    // get extended pointer on parent GPT in parent thread cluster
448    parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt );
449
450    // allocate memory for child thread descriptor
451    child_ptr = thread_alloc();
452    if( child_ptr == NULL )
[23]453    {
454        printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ );
[408]455        return -1;
[23]456    }
[14]457
[171]458    // initialize thread descriptor
[408]459    error = thread_init( child_ptr,
460                         child_process,
[14]461                         THREAD_USER,
[408]462                         func,
463                         args,
[14]464                         core_lid,
[408]465                         base,
466                         size );
[23]467    if( error )
[14]468    {
[408]469            printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ );
470        thread_release( child_ptr );
[14]471        return EINVAL;
472    }
473
[407]474    // return child pointer
[408]475    *child_thread = child_ptr;
[1]476
[408]477    // set detached flag if required
478    if( flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED;
[1]479
[408]480    // update uzone pointer in child thread descriptor
[428]481    child_ptr->uzone_current = (char *)((intptr_t)uzone +
482                                        (intptr_t)child_ptr - 
483                                        (intptr_t)parent_ptr );
[408]484 
485
[407]486    // allocate CPU context for child thread
[408]487        if( hal_cpu_context_alloc( child_ptr ) )
[23]488    {
[407]489            printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ );
[408]490        thread_release( child_ptr );
491        return -1;
[23]492    }
493
[407]494    // allocate FPU context for child thread
[408]495        if( hal_fpu_context_alloc( child_ptr ) )
[23]496    {
[407]497            printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ );
[408]498        thread_release( child_ptr );
499        return -1;
[23]500    }
501
[408]502    // create and initialize STACK vseg
503    vseg = vseg_alloc();
504    vseg_init( vseg,
505               VSEG_TYPE_STACK,
506               base,
507               size,
508               vpn_base,
509               vpn_size,
510               0, 0, XPTR_NULL,                         // not a file vseg
511               local_cxy );
[1]512
[408]513    // register STACK vseg in local child VSL
514    vseg_attach( &child_process->vmm , vseg );
515
516    // copy all valid STACK GPT entries   
517    vpn_t          vpn;
518    bool_t         mapped;
519    ppn_t          ppn;
520    for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
521    {
522        error = hal_gpt_pte_copy( &child_process->vmm.gpt,
523                                  parent_gpt_xp,
524                                  vpn,
525                                  true,                 // set cow
526                                  &ppn,
527                                  &mapped );
528        if( error )
529        {
[473]530            vseg_detach( vseg );
[408]531            vseg_free( vseg );
532            thread_release( child_ptr );
533            printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ );
534            return -1;
535        }
536
[433]537        // increment pending forks counter for the page if mapped
[408]538        if( mapped )
539        {
[469]540            // get pointers on the page descriptor
[408]541            xptr_t   page_xp  = ppm_ppn2page( ppn );
542            cxy_t    page_cxy = GET_CXY( page_xp );
[469]543            page_t * page_ptr = GET_PTR( page_xp );
544
545            // get extended pointers on forks and lock fields
546            xptr_t forks_xp = XPTR( page_cxy , &page_ptr->forks );
547            xptr_t lock_xp  = XPTR( page_cxy , &page_ptr->lock );
548
549            // increment the forks counter
550            remote_spinlock_lock( lock_xp ); 
[473]551            hal_remote_atomic_add( forks_xp , 1 );
[469]552            remote_spinlock_unlock( lock_xp ); 
[408]553
[438]554#if (DEBUG_THREAD_USER_FORK & 1)
[433]555cycle = (uint32_t)hal_get_cycles();
[438]556if( DEBUG_THREAD_USER_FORK < cycle )
[469]557printk("\n[DBG] %s : thread %x in process %x copied one PTE to child GPT : vpn %x / forks %d\n",
558__FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, vpn,
559hal_remote_lw( XPTR( page_cxy , &page_ptr->forks) ) );
[433]560#endif
[408]561
562        }
563    }
564
[433]565    // set COW flag for all mapped entries of STAK vseg in parent thread GPT
566    hal_gpt_set_cow( parent_gpt_xp,
567                     vpn_base,
568                     vpn_size );
[408]569 
[438]570#if DEBUG_THREAD_USER_FORK
[433]571cycle = (uint32_t)hal_get_cycles();
[438]572if( DEBUG_THREAD_USER_FORK < cycle )
[469]573printk("\n[DBG] %s : thread %x in process %x exit / child_thread %x / cycle %d\n",
574__FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, child_ptr, cycle );
[433]575#endif
[407]576
[1]577        return 0;
[5]578
[296]579}  // end thread_user_fork()
580
[457]581////////////////////////////////////////////////
582error_t thread_user_exec( void     * entry_func,
583                          uint32_t   argc,
584                          char    ** argv )
585{
586    thread_t  * thread  = CURRENT_THREAD;
587    process_t * process = thread->process;
588
589#if DEBUG_THREAD_USER_EXEC
590uint32_t cycle = (uint32_t)hal_get_cycles();
591if( DEBUG_THREAD_USER_EXEC < cycle )
592printk("\n[DBG] %s : thread %x in process %x enter / cycle %d\n",
593__FUNCTION__, thread->trdid, process->pid, cycle );
594#endif
595
596        assert( (thread->type == THREAD_USER )          , __FUNCTION__, "bad type" );
597        assert( (thread->signature == THREAD_SIGNATURE) , __FUNCTION__, "bad signature" );
598        assert( (thread->local_locks == 0)              , __FUNCTION__, "bad local locks" );
599        assert( (thread->remote_locks == 0)             , __FUNCTION__, "bad remote locks" );
600
601        // re-initialize various thread descriptor fields
602    thread->quantum         = 0;            // TODO
603    thread->ticks_nr        = 0;            // TODO
604    thread->time_last_check = 0;            // TODO
605
606#if CONFIG_LOCKS_DEBUG
607    list_root_init( &thread->locks_root ); 
608    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
609#endif
610
611    thread->entry_func      = entry_func;
612    thread->main_argc       = argc; 
613    thread->main_argv       = argv;
614
615    // the main thread is always detached
616    thread->flags           = THREAD_FLAG_DETACHED;
617    thread->blocked         = 0;
618    thread->errno           = 0;
619    thread->fork_user       = 0;    // not inherited
620    thread->fork_cxy        = 0;    // not inherited
621
622    // reset thread info
623    memset( &thread->info , 0 , sizeof(thread_info_t) );
624
625    // initialize join_lock
626    remote_spinlock_init( XPTR( local_cxy , &thread->join_lock ) );
627
628    // allocate an user stack vseg for main thread
629    vseg_t * vseg = vmm_create_vseg( process,
630                                     VSEG_TYPE_STACK,
631                                     0,                 // size unused
632                                     0,                 // length unused
633                                     0,                 // file_offset unused
634                                     0,                 // file_size unused
635                                     XPTR_NULL,         // mapper_xp unused
636                                     local_cxy );
637    if( vseg == NULL )
638    {
639            printk("\n[ERROR] in %s : cannot create stack vseg for main thread\n", __FUNCTION__ );
640                return -1;
641    }
642
[469]643    // update user stack in thread descriptor
[457]644    thread->u_stack_base = vseg->min;
645    thread->u_stack_size = vseg->max - vseg->min;
646   
647    // release FPU ownership if required
648    if( thread->core->fpu_owner == thread ) thread->core->fpu_owner = NULL;
649
650    // re-initialize  FPU context
651    hal_fpu_context_init( thread );
652
653#if DEBUG_THREAD_USER_EXEC
654cycle = (uint32_t)hal_get_cycles();
655if( DEBUG_THREAD_USER_EXEC < cycle )
656printk("\n[DBG] %s : thread %x in process %x set CPU context & jump to user code / cycle %d\n",
657__FUNCTION__, thread->trdid, process->pid, cycle );
658vmm_display( process , true );
659#endif
660
661    // re-initialize CPU context... and jump to user code
662        hal_cpu_context_exec( thread );
663
664    assert( false, __FUNCTION__, "we should execute this code");
665 
666    return 0;
667
668}  // end thread_user_exec()
669
[1]670/////////////////////////////////////////////////////////
671error_t thread_kernel_create( thread_t     ** new_thread,
672                              thread_type_t   type,
[171]673                              void          * func,
674                              void          * args,
[1]675                                              lid_t           core_lid )
676{
677    error_t        error;
[14]678        thread_t     * thread;       // pointer on new thread descriptor
[1]679
[407]680    assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) ,
681    __FUNCTION__ , "illegal thread type" );
[1]682
[171]683    assert( (core_lid < LOCAL_CLUSTER->cores_nr) ,
[5]684            __FUNCTION__ , "illegal core_lid" );
[1]685
[438]686#if DEBUG_THREAD_KERNEL_CREATE
[433]687uint32_t cycle = (uint32_t)hal_get_cycles();
[438]688if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[433]689printk("\n[DBG] %s : thread %x enter / requested_type %s / cycle %d\n",
690__FUNCTION__, CURRENT_THREAD, thread, thread_type_str(type), cycle );
691#endif
692
[171]693    // allocate memory for new thread descriptor
[14]694    thread = thread_alloc();
695
696    if( thread == NULL ) return ENOMEM;
697
[171]698    // initialize thread descriptor
[14]699    error = thread_init( thread,
700                         &process_zero,
701                         type,
702                         func,
703                         args,
704                         core_lid,
705                         0 , 0 );  // no user stack for a kernel thread
706
[171]707    if( error ) // release allocated memory for thread descriptor
[1]708    {
[185]709        thread_release( thread );
[457]710        return ENOMEM;
[1]711    }
712
[171]713    // allocate & initialize CPU context
[457]714        error = hal_cpu_context_alloc( thread );
715    if( error )
716    {
717        thread_release( thread );
718        return EINVAL;
719    }
720    hal_cpu_context_init( thread );
[14]721
[457]722
[438]723#if DEBUG_THREAD_KERNEL_CREATE
[433]724cycle = (uint32_t)hal_get_cycles();
[438]725if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[433]726printk("\n[DBG] %s : thread %x exit / new_thread %x / type %s / cycle %d\n",
727__FUNCTION__, CURRENT_THREAD, thread, thread_type_str(type), cycle );
728#endif
[1]729
[171]730    *new_thread = thread;
[1]731        return 0;
[5]732
[296]733} // end thread_kernel_create()
734
[457]735//////////////////////////////////////////////
736void thread_idle_init( thread_t      * thread,
737                       thread_type_t   type,
738                       void          * func,
739                       void          * args,
740                           lid_t           core_lid )
[14]741{
[407]742    assert( (type == THREAD_IDLE) , __FUNCTION__ , "illegal thread type" );
743    assert( (core_lid < LOCAL_CLUSTER->cores_nr) , __FUNCTION__ , "illegal core index" );
[14]744
[457]745    // initialize thread descriptor
[14]746    error_t  error = thread_init( thread,
747                                  &process_zero,
748                                  type,
749                                  func,
750                                  args,
751                                  core_lid,
752                                  0 , 0 );   // no user stack for a kernel thread
753
[457]754    assert( (error == 0), __FUNCTION__, "cannot create thread idle" );
755
[14]756    // allocate & initialize CPU context if success
[457]757    error = hal_cpu_context_alloc( thread );
[171]758
[457]759    assert( (error == 0), __FUNCTION__, "cannot allocate CPU context" );
[14]760
[457]761    hal_cpu_context_init( thread );
762
[438]763}  // end thread_idle_init()
[407]764
[1]765///////////////////////////////////////////////////////////////////////////////////////
766// TODO: check that all memory dynamically allocated during thread execution
[440]767// has been released, using a cache of mmap requests. [AG]
[1]768///////////////////////////////////////////////////////////////////////////////////////
[443]769bool_t thread_destroy( thread_t * thread )
[1]770{
[409]771    reg_t        save_sr;
[443]772    bool_t       last_thread;
[1]773
774    process_t  * process    = thread->process;
775    core_t     * core       = thread->core;
776
[438]777#if DEBUG_THREAD_DESTROY
[433]778uint32_t cycle = (uint32_t)hal_get_cycles();
[438]779if( DEBUG_THREAD_DESTROY < cycle )
[433]780printk("\n[DBG] %s : thread %x enter to destroy thread %x in process %x / cycle %d\n",
[450]781__FUNCTION__, CURRENT_THREAD, thread->trdid, process->pid, cycle );
[433]782#endif
[1]783
[443]784    assert( (thread->local_locks == 0) , __FUNCTION__ , 
785    "local lock not released for thread %x in process %x", thread->trdid, process->pid );
[171]786
[443]787    assert( (thread->remote_locks == 0) , __FUNCTION__ , 
788    "remote lock not released for thread %x in process %x", thread->trdid, process->pid );
[5]789
[1]790    // update intrumentation values
[408]791        process->vmm.pgfault_nr += thread->info.pgfault_nr;
[1]792
793    // release memory allocated for CPU context and FPU context
794        hal_cpu_context_destroy( thread );
[409]795        if ( thread->type == THREAD_USER ) hal_fpu_context_destroy( thread );
[1]796       
[428]797    // release FPU ownership if required
[409]798        hal_disable_irq( &save_sr );
[1]799        if( core->fpu_owner == thread )
800        {
801                core->fpu_owner = NULL;
802                hal_fpu_disable();
803        }
[409]804        hal_restore_irq( save_sr );
[1]805
[171]806    // remove thread from process th_tbl[]
[443]807    last_thread = process_remove_thread( thread );
[1]808       
[438]809    // update DQDT
810    dqdt_update_threads( -1 );
[23]811
[1]812    // invalidate thread descriptor
813        thread->signature = 0;
814
815    // release memory for thread descriptor
[23]816    thread_release( thread );
[1]817
[438]818#if DEBUG_THREAD_DESTROY
[433]819cycle = (uint32_t)hal_get_cycles();
[438]820if( DEBUG_THREAD_DESTROY < cycle )
[450]821printk("\n[DBG] %s : thread %x exit / destroyed thread %x in process %x / last %d / cycle %d\n",
822__FUNCTION__, CURRENT_THREAD, thread->trdid, process->pid, last_thread / cycle );
[433]823#endif
[1]824
[443]825    return last_thread;
826
[407]827}   // end thread_destroy()
828
[416]829//////////////////////////////////////////////////
830inline void thread_set_req_ack( thread_t * target,
831                                uint32_t * rsp_count )
[1]832{
[409]833    reg_t    save_sr;   // for critical section
834
[416]835    // get pointer on target thread scheduler
836    scheduler_t * sched = &target->core->scheduler;
[409]837
[416]838    // wait scheduler ready to handle a new request
839    while( sched->req_ack_pending ) asm volatile( "nop" );
[409]840   
841    // enter critical section
842    hal_disable_irq( &save_sr );
843     
[416]844    // set request in target thread scheduler
845    sched->req_ack_pending = true;
[409]846
[416]847    // set ack request in target thread "flags"
848    hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK );
[409]849
[416]850    // set pointer on responses counter in target thread
851    target->ack_rsp_count = rsp_count;
[409]852   
853    // exit critical section
854    hal_restore_irq( save_sr );
855
[407]856    hal_fence();
[171]857
[416]858}  // thread_set_req_ack()
[409]859
[416]860/////////////////////////////////////////////////////
861inline void thread_reset_req_ack( thread_t * target )
[1]862{
[409]863    reg_t    save_sr;   // for critical section
864
865    // get pointer on target thread scheduler
[416]866    scheduler_t * sched = &target->core->scheduler;
[409]867
868    // check signal pending in scheduler
[416]869    assert( sched->req_ack_pending , __FUNCTION__ , "no pending signal" );
[409]870   
871    // enter critical section
872    hal_disable_irq( &save_sr );
873     
874    // reset signal in scheduler
[416]875    sched->req_ack_pending = false;
[409]876
877    // reset signal in thread "flags"
[416]878    hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK );
[409]879
880    // reset pointer on responses counter
[416]881    target->ack_rsp_count = NULL;
[409]882   
883    // exit critical section
884    hal_restore_irq( save_sr );
885
[407]886    hal_fence();
[171]887
[416]888}  // thread_reset_req_ack()
[409]889
[1]890////////////////////////////////
891inline bool_t thread_can_yield()
892{
893    thread_t * this = CURRENT_THREAD;
[367]894    return (this->local_locks == 0) && (this->remote_locks == 0);
[1]895}
896
[367]897/////////////////////////
898void thread_check_sched()
[1]899{
[338]900    thread_t * this = CURRENT_THREAD;
[1]901
[367]902        if( (this->local_locks == 0) && 
903        (this->remote_locks == 0) &&
904        (this->flags & THREAD_FLAG_SCHED) ) 
905    {
906        this->flags &= ~THREAD_FLAG_SCHED;
[408]907        sched_yield( "delayed scheduling" );
[367]908    }
[1]909
[407]910}  // end thread_check_sched()
911
[436]912//////////////////////////////////////
913void thread_block( xptr_t   thread_xp,
914                   uint32_t cause )
[407]915{
[436]916    // get thread cluster and local pointer
917    cxy_t      cxy = GET_CXY( thread_xp );
918    thread_t * ptr = GET_PTR( thread_xp );
919
[407]920    // set blocking cause
[436]921    hal_remote_atomic_or( XPTR( cxy , &ptr->blocked ) , cause );
[407]922    hal_fence();
923
[438]924#if DEBUG_THREAD_BLOCK
[457]925uint32_t    cycle   = (uint32_t)hal_get_cycles();
926process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) );
[438]927if( DEBUG_THREAD_BLOCK < cycle )
[457]928printk("\n[DBG] %s : thread %x in process %x blocked thread %x in process %x / cause %x\n",
929__FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid,
930ptr->trdid, hal_remote_lw(XPTR( cxy , &process->pid )), cause );
[433]931#endif
932
[407]933} // end thread_block()
934
[433]935////////////////////////////////////////////
936uint32_t thread_unblock( xptr_t   thread_xp,
[407]937                         uint32_t cause )
938{
939    // get thread cluster and local pointer
[433]940    cxy_t      cxy = GET_CXY( thread_xp );
941    thread_t * ptr = GET_PTR( thread_xp );
[407]942
943    // reset blocking cause
944    uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause );
945    hal_fence();
946
[438]947#if DEBUG_THREAD_BLOCK
[457]948uint32_t    cycle   = (uint32_t)hal_get_cycles();
949process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) );
[438]950if( DEBUG_THREAD_BLOCK < cycle )
[457]951printk("\n[DBG] %s : thread %x in process %x unblocked thread %x in process %x / cause %x\n",
952__FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid,
953ptr->trdid, hal_remote_lw(XPTR( cxy , &process->pid )), cause );
[433]954#endif
955
[446]956    // return a non zero value if the cause bit is modified
957    return( previous & cause );
[436]958
[446]959}  // end thread_unblock()
[407]960
[440]961//////////////////////////////////////
962void thread_delete( xptr_t  target_xp,
963                    pid_t   pid,
964                    bool_t  is_forced )
965{
966    reg_t       save_sr;                // for critical section
967    bool_t      target_join_done;       // joining thread arrived first
968    bool_t      target_attached;        // target thread attached
969    xptr_t      killer_xp;              // extended pointer on killer thread (this)
970    thread_t  * killer_ptr;             // pointer on killer thread (this)
971    cxy_t       target_cxy;             // target thread cluster     
972    thread_t  * target_ptr;             // pointer on target thread
973    xptr_t      target_flags_xp;        // extended pointer on target thread <flags>
974    uint32_t    target_flags;           // target thread <flags> value
975    xptr_t      target_join_lock_xp;    // extended pointer on target thread <join_lock>
976    xptr_t      target_join_xp_xp;      // extended pointer on target thread <join_xp>
977    trdid_t     target_trdid;           // target thread identifier
978    ltid_t      target_ltid;            // target thread local index
979    xptr_t      joining_xp;             // extended pointer on joining thread
980    thread_t  * joining_ptr;            // pointer on joining thread
981    cxy_t       joining_cxy;            // joining thread cluster
982    cxy_t       owner_cxy;              // process owner cluster
983
984
985    // get target thread pointers, identifiers, and flags
986    target_cxy      = GET_CXY( target_xp );
987    target_ptr      = GET_PTR( target_xp );
988    target_trdid    = hal_remote_lw( XPTR( target_cxy , &target_ptr->trdid ) );
989    target_ltid     = LTID_FROM_TRDID( target_trdid );
990    target_flags_xp = XPTR( target_cxy , &target_ptr->flags ); 
991    target_flags    = hal_remote_lw( target_flags_xp );
992
993    // get killer thread pointers
994    killer_ptr = CURRENT_THREAD;
995    killer_xp  = XPTR( local_cxy , killer_ptr );
996
997#if DEBUG_THREAD_DELETE
998uint32_t cycle  = (uint32_t)hal_get_cycles;
999if( DEBUG_THREAD_DELETE < cycle )
1000printk("\n[DBG] %s : killer thread %x enter for target thread %x / cycle %d\n",
1001__FUNCTION__, killer_ptr, target_ptr, cycle );
1002#endif
1003
1004    // target thread cannot be the main thread, because the main thread
1005    // must be deleted by the parent process sys_wait() function
1006    owner_cxy = CXY_FROM_PID( pid );
1007    assert( ((owner_cxy != target_cxy) || (target_ltid != 0)), __FUNCTION__,
1008    "tharget thread cannot be the main thread\n" );
1009
1010    // block the target thread
1011    thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
1012
1013    // get attached from target flag descriptor
1014    target_attached = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_DETACHED) != 0);
1015
1016    // synchronize with the joining thread if the target thread is attached
1017    if( target_attached && (is_forced == false) )
1018    {
1019        // build extended pointers on target thread join fields
1020        target_join_lock_xp  = XPTR( target_cxy , &target_ptr->join_lock );
1021        target_join_xp_xp    = XPTR( target_cxy , &target_ptr->join_xp );
1022
1023        // enter critical section
1024        hal_disable_irq( &save_sr );
1025
1026        // take the join_lock in target thread descriptor
1027        remote_spinlock_lock( target_join_lock_xp );
1028
1029        // get join_done from target thread descriptor
1030        target_join_done = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_JOIN_DONE) != 0);
1031   
1032        if( target_join_done )  // joining thread arrived first => unblock the joining thread
1033        {
1034            // get extended pointer on joining thread
1035            joining_xp  = (xptr_t)hal_remote_lwd( target_join_xp_xp );
1036            joining_ptr = GET_PTR( joining_xp );
1037            joining_cxy = GET_CXY( joining_xp );
1038           
1039            // reset the join_done flag in target thread
1040            hal_remote_atomic_and( target_flags_xp , ~THREAD_FLAG_JOIN_DONE );
1041
1042            // unblock the joining thread
1043            thread_unblock( joining_xp , THREAD_BLOCKED_JOIN );
1044
1045            // release the join_lock in target thread descriptor
1046            remote_spinlock_unlock( target_join_lock_xp );
1047
1048            // restore IRQs
1049            hal_restore_irq( save_sr );
1050        }
1051        else                // this thread arrived first => register flags and deschedule
1052        {
1053            // set the kill_done flag in target thread
1054            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_KILL_DONE );
1055
1056            // block this thread on BLOCKED_JOIN
1057            thread_block( killer_xp , THREAD_BLOCKED_JOIN );
1058
1059            // set extended pointer on killer thread in target thread
1060            hal_remote_swd( target_join_xp_xp , killer_xp );
1061
1062            // release the join_lock in target thread descriptor
1063            remote_spinlock_unlock( target_join_lock_xp );
1064
1065            // deschedule
1066            sched_yield( "killer thread wait joining thread" );
1067
1068            // restore IRQs
1069            hal_restore_irq( save_sr );
1070        }
1071    }  // end if attached
1072
1073    // set the REQ_DELETE flag in target thread descriptor
1074    hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
1075
1076#if DEBUG_THREAD_DELETE
1077cycle  = (uint32_t)hal_get_cycles;
1078if( DEBUG_THREAD_DELETE < cycle )
1079printk("\n[DBG] %s : killer thread %x exit for target thread %x / cycle %d\n",
1080__FUNCTION__, killer_ptr, target_ptr, cycle );
1081#endif
1082
1083}  // end thread_delete()
1084
1085
1086
[14]1087///////////////////////
1088void thread_idle_func()
[1]1089{
[446]1090
1091#if DEBUG_THREAD_IDLE
1092uint32_t cycle;
1093#endif
1094
[1]1095    while( 1 )
1096    {
[408]1097        // unmask IRQs
1098        hal_enable_irq( NULL );
1099
[443]1100        // force core to low-power mode (optional)
1101        if( CONFIG_THREAD_IDLE_MODE_SLEEP ) 
[407]1102        {
[1]1103
[446]1104#if (DEBUG_THREAD_IDLE & 1)
1105cycle  = (uint32_t)hal_get_cycles;
[438]1106if( DEBUG_THREAD_IDLE < cycle )
[446]1107printk("\n[DBG] %s : idle thread on core[%x,%d] goes to sleep / cycle %d\n",
1108__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle );
[433]1109#endif
[1]1110
[407]1111            hal_core_sleep();
[1]1112
[446]1113#if (DEBUG_THREAD_IDLE & 1)
[433]1114cycle  = (uint32_t)hal_get_cycles;
[438]1115if( DEBUG_THREAD_IDLE < cycle )
[446]1116printk("\n[DBG] %s : idle thread on core[%x,%d] wake up / cycle %d\n",
[433]1117__FUNCTION__, this, local_cxy, this->core->lid, cycle );
1118#endif
[407]1119
1120        }
[443]1121
[446]1122#if DEBUG_THREAD_IDLE
1123sched_display( CURRENT_THREAD->core->lid );
1124#endif     
1125
[443]1126        // search a runable thread
1127        sched_yield( "IDLE" );
[418]1128    }
[407]1129}  // end thread_idle()
[1]1130
[407]1131
[473]1132///////////////////////////////////////////
1133void thread_time_update( thread_t * thread,
1134                         uint32_t   is_user )
[16]1135{
[473]1136    cycle_t current_cycle;   // current cycle counter value
1137    cycle_t last_cycle;      // last cycle counter value
[1]1138
[473]1139    // get pointer on thread_info structure
1140    thread_info_t * info = &thread->info;
1141
1142    // get last cycle counter value
1143    last_cycle = info->last_cycle;
1144
1145    // get current cycle counter value
1146    current_cycle = hal_get_cycles();
1147
1148    // update thread_info structure
1149    info->last_cycle = current_cycle;
1150
1151    // update time in thread_info
1152    if( is_user ) info->usr_cycles += (current_cycle - last_cycle);
1153    else          info->sys_cycles += (current_cycle - last_cycle);
[16]1154}
1155
[23]1156/////////////////////////////////////
1157xptr_t thread_get_xptr( pid_t    pid,
1158                        trdid_t  trdid )
1159{
1160    cxy_t         target_cxy;          // target thread cluster identifier
1161    ltid_t        target_thread_ltid;  // target thread local index
[171]1162    thread_t    * target_thread_ptr;   // target thread local pointer
[23]1163    xptr_t        target_process_xp;   // extended pointer on target process descriptor
[171]1164    process_t   * target_process_ptr;  // local pointer on target process descriptor
[23]1165    pid_t         target_process_pid;  // target process identifier
1166    xlist_entry_t root;                // root of list of process in target cluster
1167    xptr_t        lock_xp;             // extended pointer on lock protecting  this list
[16]1168
[23]1169    // get target cluster identifier and local thread identifier
1170    target_cxy         = CXY_FROM_TRDID( trdid );
1171    target_thread_ltid = LTID_FROM_TRDID( trdid );
1172
[436]1173    // check trdid argument
1174        if( (target_thread_ltid >= CONFIG_THREAD_MAX_PER_CLUSTER) || 
1175        cluster_is_undefined( target_cxy ) )         return XPTR_NULL;
1176
[23]1177    // get root of list of process descriptors in target cluster
1178    hal_remote_memcpy( XPTR( local_cxy  , &root ),
1179                       XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ),
1180                       sizeof(xlist_entry_t) );
1181
[171]1182    // get extended pointer on lock protecting the list of processes
[23]1183    lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock );
1184
1185    // take the lock protecting the list of processes in target cluster
1186    remote_spinlock_lock( lock_xp );
1187
1188    // loop on list of process in target cluster to find the PID process
1189    xptr_t  iter;
1190    bool_t  found = false;
1191    XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter )
1192    {
1193        target_process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
[469]1194        target_process_ptr = GET_PTR( target_process_xp );
[23]1195        target_process_pid = hal_remote_lw( XPTR( target_cxy , &target_process_ptr->pid ) );
1196        if( target_process_pid == pid )
1197        {
1198            found = true;
1199            break;
1200        }
1201    }
1202
1203    // release the lock protecting the list of processes in target cluster
1204    remote_spinlock_unlock( lock_xp );
1205
[436]1206    // check PID found
1207    if( found == false ) return XPTR_NULL;
[23]1208
1209    // get target thread local pointer
1210    xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] );
[171]1211    target_thread_ptr = (thread_t *)hal_remote_lpt( xp );
[23]1212
[436]1213    if( target_thread_ptr == NULL )  return XPTR_NULL;
[23]1214
1215    return XPTR( target_cxy , target_thread_ptr );
[171]1216}
[23]1217
Note: See TracBrowser for help on using the repository browser.