source: trunk/kernel/kern/thread.c @ 614

Last change on this file since 614 was 611, checked in by alain, 6 years ago

Introduce sigificant modifs in VFS to support the <ls> command,
and the . and .. directories entries.

File size: 49.2 KB
RevLine 
[1]1/*
[564]2 * thread.c -   thread operations implementation (user & kernel)
[171]3 *
[1]4 * Author  Ghassan Almaless (2008,2009,2010,2011,2012)
[564]5 *         Alain Greiner (2016,2017,2018)
[1]6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
[5]9 * This file is part of ALMOS-MKH.
[1]10 *
[5]11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
[1]12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
[5]15 * ALMOS-MKH is distributed in the hope that it will be useful, but
[1]16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
[5]21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
[1]22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[457]26#include <hal_kernel_types.h>
[1]27#include <hal_context.h>
28#include <hal_irqmask.h>
29#include <hal_special.h>
30#include <hal_remote.h>
31#include <memcpy.h>
32#include <printk.h>
33#include <cluster.h>
34#include <process.h>
35#include <scheduler.h>
[188]36#include <dev_pic.h>
[1]37#include <core.h>
38#include <list.h>
39#include <xlist.h>
40#include <page.h>
41#include <kmem.h>
42#include <ppm.h>
43#include <thread.h>
[446]44#include <rpc.h>
[1]45
46//////////////////////////////////////////////////////////////////////////////////////
47// Extern global variables
48//////////////////////////////////////////////////////////////////////////////////////
49
[564]50extern process_t            process_zero;       // allocated in kernel_init.c
51extern char               * lock_type_str[];    // allocated in kernel_init.c
52extern chdev_directory_t    chdev_dir;          // allocated in kernel_init.c
[1]53
54//////////////////////////////////////////////////////////////////////////////////////
[16]55// This function returns a printable string for the thread type.
[1]56//////////////////////////////////////////////////////////////////////////////////////
[527]57const char * thread_type_str( thread_type_t type )
[5]58{
[527]59  switch ( type ) {
60  case THREAD_USER:   return "USR";
61  case THREAD_RPC:    return "RPC";
62  case THREAD_DEV:    return "DEV";
63  case THREAD_IDLE:   return "IDL";
64  default:            return "undefined";
65  }
[5]66}
67
[1]68/////////////////////////////////////////////////////////////////////////////////////
[14]69// This static function allocates physical memory for a thread descriptor.
70// It can be called by the three functions:
[1]71// - thread_user_create()
[14]72// - thread_user_fork()
[1]73// - thread_kernel_create()
74/////////////////////////////////////////////////////////////////////////////////////
[14]75// @ return pointer on thread descriptor if success / return NULL if failure.
[1]76/////////////////////////////////////////////////////////////////////////////////////
[485]77static thread_t * thread_alloc( void )
[1]78{
[23]79        page_t       * page;   // pointer on page descriptor containing thread descriptor
[171]80        kmem_req_t     req;    // kmem request
[1]81
82        // allocates memory for thread descriptor + kernel stack
83        req.type  = KMEM_PAGE;
[14]84        req.size  = CONFIG_THREAD_DESC_ORDER;
[1]85        req.flags = AF_KERNEL | AF_ZERO;
86        page      = kmem_alloc( &req );
87
[23]88        if( page == NULL ) return NULL;
[1]89
[315]90    // return pointer on new thread descriptor
91    xptr_t base_xp = ppm_page2base( XPTR(local_cxy , page ) );
[469]92    return GET_PTR( base_xp );
[315]93
94}  // end thread_alloc()
95 
96
[14]97/////////////////////////////////////////////////////////////////////////////////////
[23]98// This static function releases the physical memory for a thread descriptor.
[53]99// It is called by the three functions:
[23]100// - thread_user_create()
101// - thread_user_fork()
102// - thread_kernel_create()
103/////////////////////////////////////////////////////////////////////////////////////
104// @ thread  : pointer on thread descriptor.
105/////////////////////////////////////////////////////////////////////////////////////
106static void thread_release( thread_t * thread )
107{
108    kmem_req_t   req;
109
[315]110    xptr_t base_xp = ppm_base2page( XPTR(local_cxy , thread ) );
111
[23]112    req.type  = KMEM_PAGE;
[315]113    req.ptr   = GET_PTR( base_xp );
[23]114    kmem_free( &req );
115}
116
117/////////////////////////////////////////////////////////////////////////////////////
[14]118// This static function initializes a thread descriptor (kernel or user).
[438]119// It can be called by the four functions:
[14]120// - thread_user_create()
121// - thread_user_fork()
122// - thread_kernel_create()
[438]123// - thread_idle_init()
124// It updates the local DQDT.
[14]125/////////////////////////////////////////////////////////////////////////////////////
[593]126// @ thread       : pointer on local thread descriptor
127// @ process      : pointer on local process descriptor.
[14]128// @ type         : thread type.
129// @ func         : pointer on thread entry function.
130// @ args         : pointer on thread entry function arguments.
131// @ core_lid     : target core local index.
132// @ u_stack_base : stack base (user thread only)
133// @ u_stack_size : stack base (user thread only)
134/////////////////////////////////////////////////////////////////////////////////////
135static error_t thread_init( thread_t      * thread,
136                            process_t     * process,
137                            thread_type_t   type,
138                            void          * func,
139                            void          * args,
140                            lid_t           core_lid,
141                            intptr_t        u_stack_base,
142                            uint32_t        u_stack_size )
143{
144    error_t        error;
145    trdid_t        trdid;      // allocated thread identifier
146
147        cluster_t    * local_cluster = LOCAL_CLUSTER;
148
[564]149#if DEBUG_THREAD_INIT
[593]150uint32_t   cycle = (uint32_t)hal_get_cycles();
151thread_t * this  = CURRENT_THREAD;
[564]152if( DEBUG_THREAD_INIT < cycle )
[593]153printk("\n[%s] thread[%x,%x] enter for thread %x in process %x / cycle %d\n",
154__FUNCTION__, this->process->pid, this->trdid, thread, process->pid , cycle );
[443]155#endif
156
[407]157    // compute thread descriptor size without kernel stack
158    uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; 
159
[1]160        // Initialize new thread descriptor
[564]161        thread->type            = type;
[1]162    thread->quantum         = 0;            // TODO
163    thread->ticks_nr        = 0;            // TODO
[457]164    thread->time_last_check = 0;            // TODO
[1]165        thread->core            = &local_cluster->core_tbl[core_lid];
166        thread->process         = process;
167
[564]168    thread->busylocks       = 0;
[1]169
[564]170#if DEBUG_BUSYLOCK
171    xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) );
[409]172#endif
[1]173
[171]174    thread->u_stack_base    = u_stack_base;
[1]175    thread->u_stack_size    = u_stack_size;
[407]176    thread->k_stack_base    = (intptr_t)thread + desc_size;
177    thread->k_stack_size    = CONFIG_THREAD_DESC_SIZE - desc_size;
[1]178
179    thread->entry_func      = func;         // thread entry point
180    thread->entry_args      = args;         // thread function arguments
[171]181    thread->flags           = 0;            // all flags reset
[1]182    thread->errno           = 0;            // no error detected
[407]183    thread->fork_user       = 0;            // no user defined placement for fork
184    thread->fork_cxy        = 0;            // user defined target cluster for fork
[409]185    thread->blocked         = THREAD_BLOCKED_GLOBAL;
[1]186
[564]187    // register new thread in process descriptor, and get a TRDID
188    error = process_register_thread( process, thread , &trdid );
189
190    if( error )
191    {
[581]192        printk("\n[ERROR] in %s : thread %x in process %x cannot get TRDID in cluster %x\n"
193        "    for thread %s in process %x / cycle %d\n",
194        __FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid,
195        local_cxy, thread_type_str(type), process->pid, (uint32_t)hal_get_cycles() );
[564]196        return EINVAL;
197    }
198
199    // initialize trdid
200    thread->trdid           = trdid;
201
202    // initialize sched list
[1]203    list_entry_init( &thread->sched_list );
204
[564]205    // initialize waiting queue entries
206    list_entry_init( &thread->wait_list );
207    xlist_entry_init( XPTR( local_cxy , &thread->wait_xlist ) );
208
209    // initialize thread info
[1]210    memset( &thread->info , 0 , sizeof(thread_info_t) );
211
[564]212    // initialize join_lock
213    remote_busylock_init( XPTR( local_cxy , &thread->join_lock ), LOCK_THREAD_JOIN );
[409]214
[1]215    // initialise signature
216        thread->signature = THREAD_SIGNATURE;
217
[443]218    // FIXME define and call an architecture specific hal_thread_init()
219    // function to initialise the save_sr field
[408]220    thread->save_sr = 0xFF13;
221
[171]222    // register new thread in core scheduler
[1]223    sched_register_thread( thread->core , thread );
224
[438]225        // update DQDT
[583]226    dqdt_increment_threads();
[438]227
[564]228#if DEBUG_THREAD_INIT
[443]229cycle = (uint32_t)hal_get_cycles();
[564]230if( DEBUG_THREAD_INIT < cycle )
[593]231printk("\n[%s] thread[%x,%x] exit for thread %x in process %x / cycle %d\n",
232__FUNCTION__, this->process->pid, this->trdid, thread, process->pid, cycle );
[443]233#endif
234
[1]235        return 0;
236
[296]237} // end thread_init()
238
[1]239/////////////////////////////////////////////////////////
[23]240error_t thread_user_create( pid_t             pid,
241                            void            * start_func,
242                            void            * start_arg,
[1]243                            pthread_attr_t  * attr,
[23]244                            thread_t       ** new_thread )
[1]245{
246    error_t        error;
247        thread_t     * thread;       // pointer on created thread descriptor
248    process_t    * process;      // pointer to local process descriptor
249    lid_t          core_lid;     // selected core local index
[23]250    vseg_t       * vseg;         // stack vseg
[1]251
[593]252assert( (attr != NULL) , "pthread attributes must be defined" );
[5]253
[438]254#if DEBUG_THREAD_USER_CREATE
[593]255thread_t * this  = CURRENT_THREAD;
256uint32_t   cycle = (uint32_t)hal_get_cycles();
[438]257if( DEBUG_THREAD_USER_CREATE < cycle )
[593]258printk("\n[%s] thread[%x,%x] enter in cluster %x for process %x / cycle %d\n",
259__FUNCTION__, this->process->pid , this->trdid , local_cxy , pid , cycle );
[433]260#endif
[428]261
[23]262    // get process descriptor local copy
263    process = process_get_local_copy( pid );
[440]264
[23]265    if( process == NULL )
266    {
267                printk("\n[ERROR] in %s : cannot get process descriptor %x\n",
268               __FUNCTION__ , pid );
269        return ENOMEM;
270    }
271
[443]272#if( DEBUG_THREAD_USER_CREATE & 1)
273if( DEBUG_THREAD_USER_CREATE < cycle )
[593]274printk("\n[%s] process descriptor = %x for process %x in cluster %x\n",
[443]275__FUNCTION__, process , pid , local_cxy );
276#endif
277
[171]278    // select a target core in local cluster
[407]279    if( attr->attributes & PT_ATTR_CORE_DEFINED )
[23]280    {
[407]281        core_lid = attr->lid;
282        if( core_lid >= LOCAL_CLUSTER->cores_nr )
283        {
284                printk("\n[ERROR] in %s : illegal core index attribute = %d\n",
285            __FUNCTION__ , core_lid );
286            return EINVAL;
287        }
[23]288    }
[407]289    else
290    {
291        core_lid = cluster_select_local_core();
292    }
[1]293
[443]294#if( DEBUG_THREAD_USER_CREATE & 1)
295if( DEBUG_THREAD_USER_CREATE < cycle )
[593]296printk("\n[%s] core[%x,%d] selected\n",
[443]297__FUNCTION__, local_cxy , core_lid );
298#endif
299
[171]300    // allocate a stack from local VMM
[407]301    vseg = vmm_create_vseg( process,
302                            VSEG_TYPE_STACK,
303                            0,                 // size unused
304                            0,                 // length unused
305                            0,                 // file_offset unused
306                            0,                 // file_size unused
307                            XPTR_NULL,         // mapper_xp unused
308                            local_cxy );
[1]309
[170]310    if( vseg == NULL )
[23]311    {
312            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
313                return ENOMEM;
[171]314    }
[23]315
[457]316#if( DEBUG_THREAD_USER_CREATE & 1)
317if( DEBUG_THREAD_USER_CREATE < cycle )
[593]318printk("\n[%s] stack vseg created / vpn_base %x / %d pages\n",
[457]319__FUNCTION__, vseg->vpn_base, vseg->vpn_size );
320#endif
321
[171]322    // allocate memory for thread descriptor
[14]323    thread = thread_alloc();
[1]324
[23]325    if( thread == NULL )
326    {
327            printk("\n[ERROR] in %s : cannot create new thread\n", __FUNCTION__ );
[611]328        vmm_delete_vseg( process->pid , vseg->min );
[23]329        return ENOMEM;
330    }
[14]331
[443]332#if( DEBUG_THREAD_USER_CREATE & 1)
333if( DEBUG_THREAD_USER_CREATE < cycle )
[593]334printk("\n[%s] new thread descriptor %x allocated\n",
[443]335__FUNCTION__, thread );
336#endif
337
[171]338    // initialize thread descriptor
[14]339    error = thread_init( thread,
340                         process,
341                         THREAD_USER,
[23]342                         start_func,
343                         start_arg,
[14]344                         core_lid,
[23]345                         vseg->min,
346                         vseg->max - vseg->min );
[171]347    if( error )
[14]348    {
[23]349            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
[611]350        vmm_delete_vseg( process->pid , vseg->min );
[23]351        thread_release( thread );
[14]352        return EINVAL;
353    }
354
[443]355#if( DEBUG_THREAD_USER_CREATE & 1)
356if( DEBUG_THREAD_USER_CREATE < cycle )
[593]357printk("\n[%s] new thread descriptor initialised / trdid %x\n",
[457]358__FUNCTION__, thread->trdid );
[443]359#endif
360
[14]361    // set DETACHED flag if required
[407]362    if( attr->attributes & PT_ATTR_DETACH ) 
363    {
364        thread->flags |= THREAD_FLAG_DETACHED;
365    }
[1]366
[171]367    // allocate & initialize CPU context
[457]368        if( hal_cpu_context_alloc( thread ) )
[23]369    {
370            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
[611]371        vmm_delete_vseg( process->pid , vseg->min );
[23]372        thread_release( thread );
373        return ENOMEM;
374    }
[457]375    hal_cpu_context_init( thread );
[23]376
[457]377    // allocate & initialize FPU context
[407]378    if( hal_fpu_context_alloc( thread ) )
[23]379    {
380            printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ );
[611]381        vmm_delete_vseg( process->pid , vseg->min );
[23]382        thread_release( thread );
383        return ENOMEM;
384    }
[457]385    hal_fpu_context_init( thread );
[23]386
[457]387#if( DEBUG_THREAD_USER_CREATE & 1)
388if( DEBUG_THREAD_USER_CREATE < cycle )
[593]389printk("\n[%s] CPU & FPU contexts created\n",
[457]390__FUNCTION__, thread->trdid );
391vmm_display( process , true );
392#endif
393
[438]394#if DEBUG_THREAD_USER_CREATE
[433]395cycle = (uint32_t)hal_get_cycles();
[438]396if( DEBUG_THREAD_USER_CREATE < cycle )
[593]397printk("\n[%s] thread[%x,%x] exit / new_thread %x / core %d / cycle %d\n",
398__FUNCTION__, this->process->pid , this->trdid , thread->trdid, core_lid, cycle );
[433]399#endif
[1]400
401    *new_thread = thread;
402        return 0;
[14]403
[296]404}  // end thread_user_create()
405
[408]406///////////////////////////////////////////////////////
407error_t thread_user_fork( xptr_t      parent_thread_xp,
408                          process_t * child_process,
409                          thread_t ** child_thread )
[1]410{
411    error_t        error;
[408]412        thread_t     * child_ptr;        // local pointer on local child thread
413    lid_t          core_lid;         // selected core local index
[1]414
[408]415    thread_t     * parent_ptr;       // local pointer on remote parent thread
416    cxy_t          parent_cxy;       // parent thread cluster
417    process_t    * parent_process;   // local pointer on parent process
418    xptr_t         parent_gpt_xp;    // extended pointer on parent thread GPT
[5]419
[408]420    void         * func;             // parent thread entry_func
421    void         * args;             // parent thread entry_args
422    intptr_t       base;             // parent thread u_stack_base
423    uint32_t       size;             // parent thread u_stack_size
424    uint32_t       flags;            // parent_thread flags
425    vpn_t          vpn_base;         // parent thread stack vpn_base
426    vpn_t          vpn_size;         // parent thread stack vpn_size
427    reg_t        * uzone;            // parent thread pointer on uzone 
428
429    vseg_t       * vseg;             // child thread STACK vseg
430
[438]431#if DEBUG_THREAD_USER_FORK
[593]432uint32_t   cycle = (uint32_t)hal_get_cycles();
433thread_t * this  = CURRENT_THREAD;
[438]434if( DEBUG_THREAD_USER_FORK < cycle )
[593]435printk("\n[%s] thread[%x,%x] enter / child_process %x / cycle %d\n",
436__FUNCTION__, this->process->pid, this->trdid, child_process->pid, cycle );
[433]437#endif
[408]438
[1]439    // select a target core in local cluster
440    core_lid = cluster_select_local_core();
441
[408]442    // get cluster and local pointer on parent thread descriptor
443    parent_cxy = GET_CXY( parent_thread_xp );
[469]444    parent_ptr = GET_PTR( parent_thread_xp );
[1]445
[408]446    // get relevant fields from parent thread
[428]447    func  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_func    ));
448    args  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_args    ));
449    base  = (intptr_t)hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->u_stack_base  ));
[564]450    size  = (uint32_t)hal_remote_l32 ( XPTR( parent_cxy , &parent_ptr->u_stack_size  ));
451    flags =           hal_remote_l32 ( XPTR( parent_cxy , &parent_ptr->flags         ));
[428]452    uzone = (reg_t *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->uzone_current ));
[1]453
[408]454    vpn_base = base >> CONFIG_PPM_PAGE_SHIFT;
455    vpn_size = size >> CONFIG_PPM_PAGE_SHIFT;
456
457    // get pointer on parent process in parent thread cluster
458    parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy,
459                                                        &parent_ptr->process ) );
460 
461    // get extended pointer on parent GPT in parent thread cluster
462    parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt );
463
464    // allocate memory for child thread descriptor
465    child_ptr = thread_alloc();
466    if( child_ptr == NULL )
[23]467    {
468        printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ );
[408]469        return -1;
[23]470    }
[14]471
[171]472    // initialize thread descriptor
[408]473    error = thread_init( child_ptr,
474                         child_process,
[14]475                         THREAD_USER,
[408]476                         func,
477                         args,
[14]478                         core_lid,
[408]479                         base,
480                         size );
[23]481    if( error )
[14]482    {
[408]483            printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ );
484        thread_release( child_ptr );
[14]485        return EINVAL;
486    }
487
[564]488#if (DEBUG_THREAD_USER_FORK & 1)
489if( DEBUG_THREAD_USER_FORK < cycle )
[593]490printk("\n[%s] thread[%x,%x] initialised thread %x in process %x\n",
491__FUNCTION__, this->process->pid, this->trdid, child_ptr->trdid, child_process->pid );
[564]492#endif
493
[407]494    // return child pointer
[408]495    *child_thread = child_ptr;
[1]496
[408]497    // set detached flag if required
498    if( flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED;
[1]499
[408]500    // update uzone pointer in child thread descriptor
[428]501    child_ptr->uzone_current = (char *)((intptr_t)uzone +
502                                        (intptr_t)child_ptr - 
503                                        (intptr_t)parent_ptr );
[408]504 
505
[407]506    // allocate CPU context for child thread
[408]507        if( hal_cpu_context_alloc( child_ptr ) )
[23]508    {
[407]509            printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ );
[408]510        thread_release( child_ptr );
511        return -1;
[23]512    }
513
[407]514    // allocate FPU context for child thread
[408]515        if( hal_fpu_context_alloc( child_ptr ) )
[23]516    {
[407]517            printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ );
[408]518        thread_release( child_ptr );
519        return -1;
[23]520    }
521
[564]522#if (DEBUG_THREAD_USER_FORK & 1)
523if( DEBUG_THREAD_USER_FORK < cycle )
[593]524printk("\n[%s] thread[%x,%x] created CPU & FPU contexts for thread %x in process %x\n",
525__FUNCTION__, this->process->pid, this->trdid, child_ptr->trdid, child_process->pid );
[564]526#endif
527
528   // create and initialize STACK vseg
[408]529    vseg = vseg_alloc();
530    vseg_init( vseg,
531               VSEG_TYPE_STACK,
532               base,
533               size,
534               vpn_base,
535               vpn_size,
536               0, 0, XPTR_NULL,                         // not a file vseg
537               local_cxy );
[1]538
[408]539    // register STACK vseg in local child VSL
[611]540    vmm_attach_vseg_to_vsl( &child_process->vmm , vseg );
[408]541
[564]542#if (DEBUG_THREAD_USER_FORK & 1)
543if( DEBUG_THREAD_USER_FORK < cycle )
[593]544printk("\n[%s] thread[%x,%x] created stack vseg for thread %x in process %x\n",
545__FUNCTION__, this->process->pid, this->trdid, child_ptr->trdid, child_process->pid );
[564]546#endif
547
[408]548    // copy all valid STACK GPT entries   
549    vpn_t          vpn;
550    bool_t         mapped;
551    ppn_t          ppn;
552    for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
553    {
554        error = hal_gpt_pte_copy( &child_process->vmm.gpt,
555                                  parent_gpt_xp,
556                                  vpn,
557                                  true,                 // set cow
558                                  &ppn,
559                                  &mapped );
560        if( error )
561        {
[611]562            vmm_detach_vseg_from_vsl( &child_process->vmm , vseg );
[408]563            thread_release( child_ptr );
564            printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ );
565            return -1;
566        }
567
[433]568        // increment pending forks counter for the page if mapped
[408]569        if( mapped )
570        {
[469]571            // get pointers on the page descriptor
[408]572            xptr_t   page_xp  = ppm_ppn2page( ppn );
573            cxy_t    page_cxy = GET_CXY( page_xp );
[469]574            page_t * page_ptr = GET_PTR( page_xp );
575
576            // get extended pointers on forks and lock fields
577            xptr_t forks_xp = XPTR( page_cxy , &page_ptr->forks );
578            xptr_t lock_xp  = XPTR( page_cxy , &page_ptr->lock );
579
[564]580            // get lock protecting page
581            remote_busylock_acquire( lock_xp ); 
582
583            // increment the forks counter in page descriptor
[473]584            hal_remote_atomic_add( forks_xp , 1 );
[408]585
[564]586            // release lock protecting page
587            remote_busylock_release( lock_xp ); 
588
[438]589#if (DEBUG_THREAD_USER_FORK & 1)
[433]590cycle = (uint32_t)hal_get_cycles();
[438]591if( DEBUG_THREAD_USER_FORK < cycle )
[593]592printk("\n[%s] thread[%x,%x] copied one PTE to child GPT : vpn %x / forks %d\n",
593__FUNCTION__, this->process->pid, this->trdid, 
594vpn, hal_remote_l32( XPTR( page_cxy , &page_ptr->forks) ) );
[433]595#endif
[408]596
597        }
598    }
599
[433]600    // set COW flag for all mapped entries of STAK vseg in parent thread GPT
601    hal_gpt_set_cow( parent_gpt_xp,
602                     vpn_base,
603                     vpn_size );
[408]604 
[438]605#if DEBUG_THREAD_USER_FORK
[433]606cycle = (uint32_t)hal_get_cycles();
[438]607if( DEBUG_THREAD_USER_FORK < cycle )
[593]608printk("\n[%s] thread[%x,%x] exit / child_thread %x / cycle %d\n",
609__FUNCTION__, this->process->pid, this->trdid, child_ptr, cycle );
[433]610#endif
[407]611
[1]612        return 0;
[5]613
[296]614}  // end thread_user_fork()
615
[457]616////////////////////////////////////////////////
617error_t thread_user_exec( void     * entry_func,
618                          uint32_t   argc,
619                          char    ** argv )
620{
621    thread_t  * thread  = CURRENT_THREAD;
622    process_t * process = thread->process;
623
624#if DEBUG_THREAD_USER_EXEC
625uint32_t cycle = (uint32_t)hal_get_cycles();
626if( DEBUG_THREAD_USER_EXEC < cycle )
[593]627printk("\n[%s] thread[%x,%x] enter / cycle %d\n",
628__FUNCTION__, process->pid, thread->trdid, cycle );
[457]629#endif
630
[564]631// check parent thread attributes
632assert( (thread->type == THREAD_USER )          , "bad type" );
633assert( (thread->signature == THREAD_SIGNATURE) , "bad signature" );
634assert( (thread->busylocks == 0)                , "bad busylocks" );
[457]635
636        // re-initialize various thread descriptor fields
637    thread->quantum         = 0;            // TODO
638    thread->ticks_nr        = 0;            // TODO
639    thread->time_last_check = 0;            // TODO
640
641    thread->entry_func      = entry_func;
642    thread->main_argc       = argc; 
643    thread->main_argv       = argv;
644
645    // the main thread is always detached
646    thread->flags           = THREAD_FLAG_DETACHED;
647    thread->blocked         = 0;
648    thread->errno           = 0;
649    thread->fork_user       = 0;    // not inherited
650    thread->fork_cxy        = 0;    // not inherited
651
[564]652    // re-initialize busylocks counters
653    thread->busylocks       = 0;
654
[457]655    // reset thread info
656    memset( &thread->info , 0 , sizeof(thread_info_t) );
657
[564]658    // re-initialize join_lock
659    remote_busylock_init( XPTR( local_cxy , &thread->join_lock ), LOCK_THREAD_JOIN );
[457]660
661    // allocate an user stack vseg for main thread
662    vseg_t * vseg = vmm_create_vseg( process,
663                                     VSEG_TYPE_STACK,
664                                     0,                 // size unused
665                                     0,                 // length unused
666                                     0,                 // file_offset unused
667                                     0,                 // file_size unused
668                                     XPTR_NULL,         // mapper_xp unused
669                                     local_cxy );
670    if( vseg == NULL )
671    {
672            printk("\n[ERROR] in %s : cannot create stack vseg for main thread\n", __FUNCTION__ );
673                return -1;
674    }
675
[469]676    // update user stack in thread descriptor
[457]677    thread->u_stack_base = vseg->min;
678    thread->u_stack_size = vseg->max - vseg->min;
679   
680    // release FPU ownership if required
681    if( thread->core->fpu_owner == thread ) thread->core->fpu_owner = NULL;
682
683    // re-initialize  FPU context
684    hal_fpu_context_init( thread );
685
686#if DEBUG_THREAD_USER_EXEC
687cycle = (uint32_t)hal_get_cycles();
688if( DEBUG_THREAD_USER_EXEC < cycle )
[593]689printk("\n[%s] thread[%x,%x] set CPU context & jump to user code / cycle %d\n",
690__FUNCTION__, process->pid, thread->trdid, cycle );
[457]691vmm_display( process , true );
692#endif
693
694    // re-initialize CPU context... and jump to user code
695        hal_cpu_context_exec( thread );
696
[564]697    assert( false, "we should not execute this code");
[457]698 
699    return 0;
700
701}  // end thread_user_exec()
702
[1]703/////////////////////////////////////////////////////////
704error_t thread_kernel_create( thread_t     ** new_thread,
705                              thread_type_t   type,
[171]706                              void          * func,
707                              void          * args,
[1]708                                              lid_t           core_lid )
709{
710    error_t        error;
[14]711        thread_t     * thread;       // pointer on new thread descriptor
[1]712
[593]713    thread_t * this = CURRENT_THREAD; 
[1]714
[593]715assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) ,
716"illegal thread type" );
[1]717
[593]718assert( (core_lid < LOCAL_CLUSTER->cores_nr) ,
719"illegal core_lid" );
720
[438]721#if DEBUG_THREAD_KERNEL_CREATE
[593]722uint32_t   cycle = (uint32_t)hal_get_cycles();
[438]723if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[593]724printk("\n[%s] thread[%x,%x] enter / requested_type %s / cycle %d\n",
725__FUNCTION__, this->process->pid, this->trdid, thread_type_str(type), cycle );
[433]726#endif
727
[171]728    // allocate memory for new thread descriptor
[14]729    thread = thread_alloc();
730
[581]731    if( thread == NULL )
732    {
733        printk("\n[ERROR] in %s : thread %x in process %x\n"
734        "   no memory for thread descriptor\n",
[593]735        __FUNCTION__, this->trdid, this->process->pid );
[581]736        return ENOMEM;
737    }
[14]738
[171]739    // initialize thread descriptor
[14]740    error = thread_init( thread,
741                         &process_zero,
742                         type,
743                         func,
744                         args,
745                         core_lid,
746                         0 , 0 );  // no user stack for a kernel thread
747
[171]748    if( error ) // release allocated memory for thread descriptor
[1]749    {
[581]750        printk("\n[ERROR] in %s : thread %x in process %x\n"
751        "   cannot initialize thread descriptor\n",
[593]752        __FUNCTION__, this->trdid, this->process->pid );
[185]753        thread_release( thread );
[457]754        return ENOMEM;
[1]755    }
756
[171]757    // allocate & initialize CPU context
[457]758        error = hal_cpu_context_alloc( thread );
[581]759
[457]760    if( error )
761    {
[581]762        printk("\n[ERROR] in %s : thread %x in process %x\n"
[593]763        "    cannot create CPU context\n",
764        __FUNCTION__, this->trdid, this->process->pid );
[457]765        thread_release( thread );
766        return EINVAL;
767    }
[581]768
[457]769    hal_cpu_context_init( thread );
[14]770
[583]771    // set THREAD_BLOCKED_IDLE for DEV threads
772    if( type == THREAD_DEV ) thread->blocked |= THREAD_BLOCKED_IDLE;
[457]773
[438]774#if DEBUG_THREAD_KERNEL_CREATE
[433]775cycle = (uint32_t)hal_get_cycles();
[438]776if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[593]777printk("\n[%s] thread[%x,%x] exit / new_thread %x / type %s / cycle %d\n",
778__FUNCTION__, this->process->pid, this->trdid, thread, thread_type_str(type), cycle );
[433]779#endif
[1]780
[171]781    *new_thread = thread;
[1]782        return 0;
[5]783
[296]784} // end thread_kernel_create()
785
[457]786//////////////////////////////////////////////
787void thread_idle_init( thread_t      * thread,
788                       thread_type_t   type,
789                       void          * func,
790                       void          * args,
791                           lid_t           core_lid )
[14]792{
793
[564]794// check arguments
795assert( (type == THREAD_IDLE) , "illegal thread type" );
796assert( (core_lid < LOCAL_CLUSTER->cores_nr) , "illegal core index" );
797
[457]798    // initialize thread descriptor
[14]799    error_t  error = thread_init( thread,
800                                  &process_zero,
801                                  type,
802                                  func,
803                                  args,
804                                  core_lid,
805                                  0 , 0 );   // no user stack for a kernel thread
806
[492]807    assert( (error == 0), "cannot create thread idle" );
[457]808
[14]809    // allocate & initialize CPU context if success
[457]810    error = hal_cpu_context_alloc( thread );
[171]811
[492]812    assert( (error == 0), "cannot allocate CPU context" );
[14]813
[457]814    hal_cpu_context_init( thread );
815
[438]816}  // end thread_idle_init()
[407]817
[1]818///////////////////////////////////////////////////////////////////////////////////////
819// TODO: check that all memory dynamically allocated during thread execution
[583]820// has been released => check vmm destroy for MMAP vsegs  [AG]
[1]821///////////////////////////////////////////////////////////////////////////////////////
[583]822void thread_destroy( thread_t * thread )
[1]823{
[409]824    reg_t        save_sr;
[1]825
826    process_t  * process    = thread->process;
827    core_t     * core       = thread->core;
828
[438]829#if DEBUG_THREAD_DESTROY
[583]830uint32_t   cycle = (uint32_t)hal_get_cycles();
831thread_t * this  = CURRENT_THREAD;
[438]832if( DEBUG_THREAD_DESTROY < cycle )
[593]833printk("\n[%s] thread[%x,%x] enter to destroy thread[%x,%x] / cycle %d\n",
[583]834__FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle );
[433]835#endif
[1]836
[583]837    // check busylocks counter
838    thread_assert_can_yield( thread , __FUNCTION__ );
[171]839
[1]840    // update intrumentation values
[408]841        process->vmm.pgfault_nr += thread->info.pgfault_nr;
[1]842
843    // release memory allocated for CPU context and FPU context
844        hal_cpu_context_destroy( thread );
[409]845        if ( thread->type == THREAD_USER ) hal_fpu_context_destroy( thread );
[1]846       
[428]847    // release FPU ownership if required
[409]848        hal_disable_irq( &save_sr );
[1]849        if( core->fpu_owner == thread )
850        {
851                core->fpu_owner = NULL;
852                hal_fpu_disable();
853        }
[409]854        hal_restore_irq( save_sr );
[1]855
856    // invalidate thread descriptor
857        thread->signature = 0;
858
859    // release memory for thread descriptor
[23]860    thread_release( thread );
[1]861
[438]862#if DEBUG_THREAD_DESTROY
[433]863cycle = (uint32_t)hal_get_cycles();
[438]864if( DEBUG_THREAD_DESTROY < cycle )
[593]865printk("\n[%s] thread[%x,%x] exit / destroyed thread[%x,%x] / cycle %d\n",
[583]866__FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle );
[433]867#endif
[1]868
[407]869}   // end thread_destroy()
870
[416]871//////////////////////////////////////////////////
872inline void thread_set_req_ack( thread_t * target,
873                                uint32_t * rsp_count )
[1]874{
[409]875    reg_t    save_sr;   // for critical section
876
[416]877    // get pointer on target thread scheduler
878    scheduler_t * sched = &target->core->scheduler;
[409]879
[416]880    // wait scheduler ready to handle a new request
881    while( sched->req_ack_pending ) asm volatile( "nop" );
[409]882   
883    // enter critical section
884    hal_disable_irq( &save_sr );
885     
[416]886    // set request in target thread scheduler
887    sched->req_ack_pending = true;
[409]888
[416]889    // set ack request in target thread "flags"
890    hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK );
[409]891
[416]892    // set pointer on responses counter in target thread
893    target->ack_rsp_count = rsp_count;
[409]894   
895    // exit critical section
896    hal_restore_irq( save_sr );
897
[407]898    hal_fence();
[171]899
[416]900}  // thread_set_req_ack()
[409]901
[416]902/////////////////////////////////////////////////////
903inline void thread_reset_req_ack( thread_t * target )
[1]904{
[409]905    reg_t    save_sr;   // for critical section
906
907    // get pointer on target thread scheduler
[416]908    scheduler_t * sched = &target->core->scheduler;
[409]909
910    // check signal pending in scheduler
[492]911    assert( sched->req_ack_pending , "no pending signal" );
[409]912   
913    // enter critical section
914    hal_disable_irq( &save_sr );
915     
916    // reset signal in scheduler
[416]917    sched->req_ack_pending = false;
[409]918
919    // reset signal in thread "flags"
[416]920    hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK );
[409]921
922    // reset pointer on responses counter
[416]923    target->ack_rsp_count = NULL;
[409]924   
925    // exit critical section
926    hal_restore_irq( save_sr );
927
[407]928    hal_fence();
[171]929
[416]930}  // thread_reset_req_ack()
[409]931
[436]932//////////////////////////////////////
933void thread_block( xptr_t   thread_xp,
934                   uint32_t cause )
[407]935{
[436]936    // get thread cluster and local pointer
937    cxy_t      cxy = GET_CXY( thread_xp );
938    thread_t * ptr = GET_PTR( thread_xp );
939
[407]940    // set blocking cause
[436]941    hal_remote_atomic_or( XPTR( cxy , &ptr->blocked ) , cause );
[407]942    hal_fence();
943
[438]944#if DEBUG_THREAD_BLOCK
[457]945uint32_t    cycle   = (uint32_t)hal_get_cycles();
946process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) );
[593]947thread_t  * this    = CURRENT_THREAD;
[438]948if( DEBUG_THREAD_BLOCK < cycle )
[593]949printk("\n[%s] thread[%x,%x] blocked thread %x in process %x / cause %x\n",
950__FUNCTION__, this->process->pid, this->trdid,
[564]951ptr->trdid, hal_remote_l32(XPTR( cxy , &process->pid )), cause );
[433]952#endif
953
[407]954} // end thread_block()
955
[433]956////////////////////////////////////////////
957uint32_t thread_unblock( xptr_t   thread_xp,
[407]958                         uint32_t cause )
959{
960    // get thread cluster and local pointer
[433]961    cxy_t      cxy = GET_CXY( thread_xp );
962    thread_t * ptr = GET_PTR( thread_xp );
[407]963
964    // reset blocking cause
965    uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause );
966    hal_fence();
967
[438]968#if DEBUG_THREAD_BLOCK
[457]969uint32_t    cycle   = (uint32_t)hal_get_cycles();
970process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) );
[593]971thread_t  * this    = CURRENT_THREAD;
[438]972if( DEBUG_THREAD_BLOCK < cycle )
[593]973printk("\n[%s] thread[%x,%x] unblocked thread %x in process %x / cause %x\n",
974__FUNCTION__, this->process->pid, this->trdid,
[564]975ptr->trdid, hal_remote_l32(XPTR( cxy , &process->pid )), cause );
[433]976#endif
977
[446]978    // return a non zero value if the cause bit is modified
979    return( previous & cause );
[436]980
[446]981}  // end thread_unblock()
[407]982
[440]983//////////////////////////////////////
984void thread_delete( xptr_t  target_xp,
985                    pid_t   pid,
986                    bool_t  is_forced )
987{
988    reg_t       save_sr;                // for critical section
989    bool_t      target_join_done;       // joining thread arrived first
990    bool_t      target_attached;        // target thread attached
991    xptr_t      killer_xp;              // extended pointer on killer thread (this)
992    thread_t  * killer_ptr;             // pointer on killer thread (this)
993    cxy_t       target_cxy;             // target thread cluster     
994    thread_t  * target_ptr;             // pointer on target thread
995    xptr_t      target_flags_xp;        // extended pointer on target thread <flags>
996    xptr_t      target_join_lock_xp;    // extended pointer on target thread <join_lock>
997    xptr_t      target_join_xp_xp;      // extended pointer on target thread <join_xp>
998    trdid_t     target_trdid;           // target thread identifier
999    ltid_t      target_ltid;            // target thread local index
1000    xptr_t      joining_xp;             // extended pointer on joining thread
1001    thread_t  * joining_ptr;            // pointer on joining thread
1002    cxy_t       joining_cxy;            // joining thread cluster
1003
[564]1004    // get target thread cluster and local pointer
[440]1005    target_cxy      = GET_CXY( target_xp );
1006    target_ptr      = GET_PTR( target_xp );
[564]1007
1008    // get target thread identifiers, and attached flag
1009    target_trdid    = hal_remote_l32( XPTR( target_cxy , &target_ptr->trdid ) );
[440]1010    target_ltid     = LTID_FROM_TRDID( target_trdid );
1011    target_flags_xp = XPTR( target_cxy , &target_ptr->flags ); 
[564]1012    target_attached = ( (hal_remote_l32( target_flags_xp ) & THREAD_FLAG_DETACHED) == 0 );
[440]1013
1014    // get killer thread pointers
1015    killer_ptr = CURRENT_THREAD;
1016    killer_xp  = XPTR( local_cxy , killer_ptr );
1017
1018#if DEBUG_THREAD_DELETE
[564]1019uint32_t cycle  = (uint32_t)hal_get_cycles();
[440]1020if( DEBUG_THREAD_DELETE < cycle )
[593]1021printk("\n[%s] killer[%x,%x] enters / target[%x,%x] / cycle %d\n",
[583]1022__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid, 
1023target_ptr->process->pid, target_ptr->trdid, cycle );
[440]1024#endif
1025
[564]1026// check target thread is not the main thread, because the main thread
1027// must be deleted by the parent process sys_wait() function
1028assert( ((CXY_FROM_PID( pid ) != target_cxy) || (target_ltid != 0)),
1029"tharget thread cannot be the main thread\n" );
1030
[583]1031    // check killer thread can yield
1032    thread_assert_can_yield( killer_ptr , __FUNCTION__ ); 
[440]1033
[583]1034    // if the target thread is attached, we must synchonize with the joining thread
1035    // before blocking and marking the target thead for delete.
1036
1037    if( target_attached && (is_forced == false) ) // synchronize with joining thread
[564]1038    {
[440]1039        // build extended pointers on target thread join fields
1040        target_join_lock_xp  = XPTR( target_cxy , &target_ptr->join_lock );
1041        target_join_xp_xp    = XPTR( target_cxy , &target_ptr->join_xp );
1042
1043        // enter critical section
1044        hal_disable_irq( &save_sr );
1045
1046        // take the join_lock in target thread descriptor
[564]1047        remote_busylock_acquire( target_join_lock_xp );
[440]1048
1049        // get join_done from target thread descriptor
[564]1050        target_join_done = ((hal_remote_l32( target_flags_xp ) & THREAD_FLAG_JOIN_DONE) != 0);
[440]1051   
[583]1052        if( target_join_done )                     // joining thread arrived first
[440]1053        {
1054            // get extended pointer on joining thread
[564]1055            joining_xp  = (xptr_t)hal_remote_l64( target_join_xp_xp );
[440]1056            joining_ptr = GET_PTR( joining_xp );
1057            joining_cxy = GET_CXY( joining_xp );
1058           
1059            // reset the join_done flag in target thread
1060            hal_remote_atomic_and( target_flags_xp , ~THREAD_FLAG_JOIN_DONE );
1061
1062            // unblock the joining thread
1063            thread_unblock( joining_xp , THREAD_BLOCKED_JOIN );
1064
1065            // release the join_lock in target thread descriptor
[564]1066            remote_busylock_release( target_join_lock_xp );
[440]1067
[583]1068            // block the target thread
1069            thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
1070
[564]1071            // set the REQ_DELETE flag in target thread descriptor
1072            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
1073
[583]1074            // exit critical section
[440]1075            hal_restore_irq( save_sr );
[564]1076
[583]1077#if DEBUG_THREAD_DELETE
1078cycle  = (uint32_t)hal_get_cycles;
[564]1079if( DEBUG_THREAD_DELETE < cycle )
[593]1080printk("\n[%s] killer[%x,%x] exit / target[%x,%x] marked after join / cycle %d\n",
[583]1081__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
1082target_ptr->process->pid, target_ptr->trdid, cycle );
[564]1083#endif
[583]1084
1085        }
1086        else                                      // killer thread arrived first
1087        {
[440]1088            // set the kill_done flag in target thread
1089            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_KILL_DONE );
1090
1091            // block this thread on BLOCKED_JOIN
1092            thread_block( killer_xp , THREAD_BLOCKED_JOIN );
1093
1094            // set extended pointer on killer thread in target thread
[564]1095            hal_remote_s64( target_join_xp_xp , killer_xp );
[440]1096
1097            // release the join_lock in target thread descriptor
[564]1098            remote_busylock_release( target_join_lock_xp );
[440]1099
[583]1100#if DEBUG_THREAD_DELETE
1101cycle  = (uint32_t)hal_get_cycles;
[564]1102if( DEBUG_THREAD_DELETE < cycle )
[593]1103printk("\n[%s] killer[%x,%x] deschedules / target[%x,%x] not completed / cycle %d\n",
[583]1104__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
1105target_ptr->process->pid, target_ptr->trdid, cycle );
[564]1106#endif
[440]1107            // deschedule
1108            sched_yield( "killer thread wait joining thread" );
1109
[583]1110            // block the target thread
1111            thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
1112
[564]1113            // set the REQ_DELETE flag in target thread descriptor
1114            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
1115
[583]1116            // exit critical section
[440]1117            hal_restore_irq( save_sr );
[583]1118
1119#if DEBUG_THREAD_DELETE
1120cycle  = (uint32_t)hal_get_cycles;
1121if( DEBUG_THREAD_DELETE < cycle )
[593]1122printk("\n[%s] killer[%x,%x] exit / target[%x,%x] marked after join / cycle %d\n",
[583]1123__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
1124target_ptr->process->pid, target_ptr->trdid, cycle );
1125#endif
1126
[440]1127        }
[564]1128    }
[583]1129    else                     // no synchronization with joining thread required
[564]1130    {
[583]1131        // block the target thread
1132        thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
1133
[564]1134        // set the REQ_DELETE flag in target thread descriptor
1135        hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
[440]1136
1137#if DEBUG_THREAD_DELETE
1138cycle  = (uint32_t)hal_get_cycles;
1139if( DEBUG_THREAD_DELETE < cycle )
[593]1140printk("\n[%s] killer[%x,%x] exit / target [%x,%x] marked / no join / cycle %d\n",
[583]1141__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
1142target_ptr->process->pid, target_ptr->trdid, cycle );
[440]1143#endif
1144
[583]1145    }
[440]1146}  // end thread_delete()
1147
1148
1149
[564]1150/////////////////////////////
[485]1151void thread_idle_func( void )
[1]1152{
1153    while( 1 )
1154    {
[408]1155        // unmask IRQs
1156        hal_enable_irq( NULL );
1157
[443]1158        // force core to low-power mode (optional)
[583]1159        if( CONFIG_SCHED_IDLE_MODE_SLEEP ) 
[407]1160        {
[1]1161
[564]1162#if DEBUG_THREAD_IDLE
1163{ 
1164uint32_t cycle = (uint32_t)hal_get_cycles();
[438]1165if( DEBUG_THREAD_IDLE < cycle )
[593]1166printk("\n[%s] idle thread on core[%x,%d] goes to sleep / cycle %d\n",
[446]1167__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle );
[564]1168}
[433]1169#endif
[1]1170
[407]1171            hal_core_sleep();
[1]1172
[564]1173#if DEBUG_THREAD_IDLE
1174{
1175uint32_t cycle = (uint32_t)hal_get_cycles();
[438]1176if( DEBUG_THREAD_IDLE < cycle )
[593]1177printk("\n[%s] idle thread on core[%x,%d] wake up / cycle %d\n",
[531]1178__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle );
[564]1179}
[433]1180#endif
[407]1181
1182        }
[443]1183
[446]1184#if DEBUG_THREAD_IDLE
[564]1185{
1186uint32_t cycle = (uint32_t)hal_get_cycles();
1187if( DEBUG_THREAD_IDLE < cycle )
[446]1188sched_display( CURRENT_THREAD->core->lid );
[564]1189}
[446]1190#endif     
[564]1191        // search a runable thread
1192        sched_yield( "running idle thread" );
[446]1193
[564]1194    } // end while
1195
[407]1196}  // end thread_idle()
[1]1197
[407]1198
[473]1199///////////////////////////////////////////
1200void thread_time_update( thread_t * thread,
[564]1201                         bool_t     is_user )
[16]1202{
[473]1203    cycle_t current_cycle;   // current cycle counter value
1204    cycle_t last_cycle;      // last cycle counter value
[1]1205
[473]1206    // get pointer on thread_info structure
1207    thread_info_t * info = &thread->info;
1208
1209    // get last cycle counter value
1210    last_cycle = info->last_cycle;
1211
1212    // get current cycle counter value
1213    current_cycle = hal_get_cycles();
1214
1215    // update thread_info structure
1216    info->last_cycle = current_cycle;
1217
1218    // update time in thread_info
1219    if( is_user ) info->usr_cycles += (current_cycle - last_cycle);
1220    else          info->sys_cycles += (current_cycle - last_cycle);
[16]1221
[564]1222}  // end thread_time_update()
1223
[23]1224/////////////////////////////////////
1225xptr_t thread_get_xptr( pid_t    pid,
1226                        trdid_t  trdid )
1227{
1228    cxy_t         target_cxy;          // target thread cluster identifier
1229    ltid_t        target_thread_ltid;  // target thread local index
[171]1230    thread_t    * target_thread_ptr;   // target thread local pointer
[23]1231    xptr_t        target_process_xp;   // extended pointer on target process descriptor
[171]1232    process_t   * target_process_ptr;  // local pointer on target process descriptor
[23]1233    pid_t         target_process_pid;  // target process identifier
1234    xlist_entry_t root;                // root of list of process in target cluster
1235    xptr_t        lock_xp;             // extended pointer on lock protecting  this list
[16]1236
[580]1237#if DEBUG_THREAD_GET_XPTR
1238uint32_t cycle  = (uint32_t)hal_get_cycles();
1239thread_t * this = CURRENT_THREAD;
1240if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1241printk("\n[%s] thread %x in process %x enters / pid %x / trdid %x / cycle %d\n",
[580]1242__FUNCTION__, this->trdid, this->process->pid, pid, trdid, cycle );
1243#endif
1244
[23]1245    // get target cluster identifier and local thread identifier
1246    target_cxy         = CXY_FROM_TRDID( trdid );
1247    target_thread_ltid = LTID_FROM_TRDID( trdid );
1248
[436]1249    // check trdid argument
[564]1250        if( (target_thread_ltid >= CONFIG_THREADS_MAX_PER_CLUSTER) || 
[436]1251        cluster_is_undefined( target_cxy ) )         return XPTR_NULL;
1252
[23]1253    // get root of list of process descriptors in target cluster
1254    hal_remote_memcpy( XPTR( local_cxy  , &root ),
1255                       XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ),
1256                       sizeof(xlist_entry_t) );
1257
[564]1258    // get extended pointer on lock protecting the list of local processes
[23]1259    lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock );
1260
1261    // take the lock protecting the list of processes in target cluster
[564]1262    remote_queuelock_acquire( lock_xp );
[23]1263
[580]1264#if( DEBUG_THREAD_GET_XPTR & 1 )
1265if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1266printk("\n[%s] scan processes in cluster %x :\n", __FUNCTION__, target_cxy );
[580]1267#endif
1268
[564]1269    // scan the list of local processes in target cluster
[23]1270    xptr_t  iter;
1271    bool_t  found = false;
1272    XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter )
1273    {
1274        target_process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
[469]1275        target_process_ptr = GET_PTR( target_process_xp );
[564]1276        target_process_pid = hal_remote_l32( XPTR( target_cxy , &target_process_ptr->pid ) );
[580]1277
1278#if( DEBUG_THREAD_GET_XPTR & 1 )
1279if( DEBUG_THREAD_GET_XPTR < cycle )
1280printk(" - process %x\n", target_process_pid );
1281#endif
1282
[23]1283        if( target_process_pid == pid )
1284        {
1285            found = true;
1286            break;
1287        }
1288    }
1289
1290    // release the lock protecting the list of processes in target cluster
[564]1291    remote_queuelock_release( lock_xp );
[23]1292
[436]1293    // check PID found
[580]1294    if( found == false ) 
1295    {
[23]1296
[580]1297#if( DEBUG_THREAD_GET_XPTR & 1 )
1298if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1299printk("\n[%s] pid %x not found in cluster %x\n",
[580]1300__FUNCTION__, pid, target_cxy );
1301#endif
1302        return XPTR_NULL;
1303    }
1304
[23]1305    // get target thread local pointer
1306    xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] );
[171]1307    target_thread_ptr = (thread_t *)hal_remote_lpt( xp );
[23]1308
[580]1309    if( target_thread_ptr == NULL )
1310    {
[23]1311
[580]1312#if( DEBUG_THREAD_GET_XPTR & 1 )
1313if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1314printk("\n[%s] thread %x not registered in process %x in cluster %x\n",
[580]1315__FUNCTION__, trdid, pid, target_cxy );
1316#endif
1317        return XPTR_NULL;
1318    }
1319
1320#if DEBUG_THREAD_GET_XPTR
1321cycle  = (uint32_t)hal_get_cycles();
1322if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1323printk("\n[%s] thread %x in process %x exit / pid %x / trdid %x / cycle %d\n",
[580]1324__FUNCTION__, this->trdid, this->process->pid, pid, trdid, cycle );
1325#endif
1326
[23]1327    return XPTR( target_cxy , target_thread_ptr );
[564]1328
1329}  // end thread_get_xptr()
1330
1331///////////////////////////////////////////////////
1332void thread_assert_can_yield( thread_t    * thread,
1333                              const char  * func_str )
1334{
1335    // does nothing if thread does not hold any busylock
1336
1337    if( thread->busylocks )
1338    {
1339        // get pointers on TXT0 chdev
1340        xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
1341        cxy_t     txt0_cxy = GET_CXY( txt0_xp );
1342        chdev_t * txt0_ptr = GET_PTR( txt0_xp );
1343
1344        // get extended pointer on TXT0 lock
1345        xptr_t  txt0_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
1346
1347        // get TXT0 lock
1348        remote_busylock_acquire( txt0_lock_xp );
1349
1350        // display error message on TXT0
[593]1351        nolock_printk("\n[PANIC] in %s / thread[%x,%x] cannot yield : "
[580]1352        "hold %d busylock(s) / cycle %d\n",
[593]1353        func_str, thread->process->pid, thread->trdid,
[564]1354        thread->busylocks, (uint32_t)hal_get_cycles() );
1355
1356#if DEBUG_BUSYLOCK
[580]1357
[583]1358// scan list of busylocks
1359xptr_t    iter_xp;
[580]1360xptr_t    root_xp  = XPTR( local_cxy , &thread->busylocks_root );
1361XLIST_FOREACH( root_xp , iter_xp )
[564]1362{
[580]1363    xptr_t       lock_xp   = XLIST_ELEMENT( iter_xp , busylock_t , xlist );
1364    cxy_t        lock_cxy  = GET_CXY( lock_xp );
1365    busylock_t * lock_ptr  = GET_PTR( lock_xp );
1366    uint32_t     lock_type = hal_remote_l32( XPTR( lock_cxy , &lock_ptr->type ) );
1367    nolock_printk(" - %s in cluster %x\n", lock_type_str[lock_type] , lock_cxy );
1368}
[564]1369
1370#endif
[23]1371
[564]1372        // release TXT0 lock
1373        remote_busylock_release( txt0_lock_xp );
1374
1375        // suicide
1376        hal_core_sleep();
1377    }
1378}  // end thread_assert_can yield()
1379
[580]1380//////////////////////////////////////////////////
1381void thread_display_busylocks( xptr_t  thread_xp )
[564]1382{
[581]1383    // get cluster and local pointer of target thread
1384    cxy_t      thread_cxy = GET_CXY( thread_xp );
1385    thread_t * thread_ptr = GET_PTR( thread_xp );
[564]1386
[581]1387#if( DEBUG_BUSYLOCK )
[564]1388
[581]1389    xptr_t    iter_xp;
[564]1390
[581]1391    // get target thread TRDID and busylocks
1392    trdid_t  trdid = hal_remote_l32(XPTR( thread_cxy , &thread_ptr->trdid ));
1393    uint32_t locks = hal_remote_l32(XPTR( thread_cxy , &thread_ptr->busylocks ));
[564]1394
[581]1395    // get target thread process and PID;
1396    process_t * process = hal_remote_lpt(XPTR( thread_cxy , &thread_ptr->process ));
1397    pid_t       pid     = hal_remote_l32(XPTR( thread_cxy , &process->pid ));
[564]1398
[581]1399    // get extended pointer on root of busylocks
1400    xptr_t    root_xp = XPTR( thread_cxy , &thread_ptr->busylocks_root );
[564]1401
[581]1402    // get pointers on TXT0 chdev
1403    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
1404    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
1405    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
[580]1406
[581]1407    // get extended pointer on remote TXT0 lock
1408    xptr_t  txt0_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
[580]1409
[581]1410    // get TXT0 lock
1411    remote_busylock_acquire( txt0_lock_xp );
[580]1412
[581]1413    // display header
1414    nolock_printk("\n***** thread %x in process %x : %d busylocks at cycle %d\n",
1415    trdid, pid, locks, (uint32_t)hal_get_cycles() );
1416
1417    // scan the xlist of busylocks when required
1418    if( locks )
1419    {
1420        XLIST_FOREACH( root_xp , iter_xp )
[580]1421        {
[581]1422            xptr_t       lock_xp   = XLIST_ELEMENT( iter_xp , busylock_t , xlist );
1423            cxy_t        lock_cxy  = GET_CXY( lock_xp );
1424            busylock_t * lock_ptr  = GET_PTR( lock_xp );
1425            uint32_t     lock_type = hal_remote_l32(XPTR( lock_cxy , &lock_ptr->type ));
1426            nolock_printk(" - %s in cluster %x\n", lock_type_str[lock_type] , lock_cxy );
[580]1427        }
[581]1428    }
[580]1429
[581]1430    // release TXT0 lock
1431    remote_busylock_release( txt0_lock_xp );
1432
1433    return;
1434
1435#endif
1436
1437    // display a warning
1438    printk("\n[WARNING] set the DEBUG_BUSYLOCK parmeter in kernel_config.h"
1439    " to display busylocks for thread %x/%x\n", thread_cxy, thread_ptr );
1440
[580]1441}  // end thread_display_busylock()
[581]1442
Note: See TracBrowser for help on using the repository browser.