source: trunk/kernel/kern/thread.c @ 659

Last change on this file since 659 was 651, checked in by alain, 5 years ago

1) Improve the VMM MMAP allocator: implement the "buddy" algorithm
to allocate only aligned blocks.
2) fix a bug in the pthread_join() / pthread_exit() mmechanism.

File size: 54.3 KB
RevLine 
[1]1/*
[564]2 * thread.c -   thread operations implementation (user & kernel)
[171]3 *
[1]4 * Author  Ghassan Almaless (2008,2009,2010,2011,2012)
[625]5 *         Alain Greiner (2016,2017,2018,2019)
[1]6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
[5]9 * This file is part of ALMOS-MKH.
[1]10 *
[5]11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
[1]12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
[5]15 * ALMOS-MKH is distributed in the hope that it will be useful, but
[1]16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
[5]21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
[1]22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[457]26#include <hal_kernel_types.h>
[1]27#include <hal_context.h>
28#include <hal_irqmask.h>
29#include <hal_special.h>
30#include <hal_remote.h>
[625]31#include <hal_vmm.h>
[1]32#include <memcpy.h>
33#include <printk.h>
34#include <cluster.h>
35#include <process.h>
36#include <scheduler.h>
[188]37#include <dev_pic.h>
[1]38#include <core.h>
39#include <list.h>
40#include <xlist.h>
41#include <page.h>
42#include <kmem.h>
43#include <ppm.h>
44#include <thread.h>
[446]45#include <rpc.h>
[1]46
47//////////////////////////////////////////////////////////////////////////////////////
48// Extern global variables
49//////////////////////////////////////////////////////////////////////////////////////
50
[564]51extern process_t            process_zero;       // allocated in kernel_init.c
52extern char               * lock_type_str[];    // allocated in kernel_init.c
53extern chdev_directory_t    chdev_dir;          // allocated in kernel_init.c
[1]54
55//////////////////////////////////////////////////////////////////////////////////////
[16]56// This function returns a printable string for the thread type.
[1]57//////////////////////////////////////////////////////////////////////////////////////
[527]58const char * thread_type_str( thread_type_t type )
[5]59{
[527]60  switch ( type ) {
61  case THREAD_USER:   return "USR";
62  case THREAD_RPC:    return "RPC";
63  case THREAD_DEV:    return "DEV";
64  case THREAD_IDLE:   return "IDL";
65  default:            return "undefined";
66  }
[5]67}
68
[1]69/////////////////////////////////////////////////////////////////////////////////////
[14]70// This static function allocates physical memory for a thread descriptor.
71// It can be called by the three functions:
[1]72// - thread_user_create()
[14]73// - thread_user_fork()
[1]74// - thread_kernel_create()
75/////////////////////////////////////////////////////////////////////////////////////
[14]76// @ return pointer on thread descriptor if success / return NULL if failure.
[1]77/////////////////////////////////////////////////////////////////////////////////////
[485]78static thread_t * thread_alloc( void )
[1]79{
[171]80        kmem_req_t     req;    // kmem request
[1]81
82        // allocates memory for thread descriptor + kernel stack
[635]83        req.type  = KMEM_PPM;
84        req.order = CONFIG_THREAD_DESC_ORDER;
[1]85        req.flags = AF_KERNEL | AF_ZERO;
86
[635]87    return kmem_alloc( &req );
[1]88
[315]89}  // end thread_alloc()
90 
91
[14]92/////////////////////////////////////////////////////////////////////////////////////
93// This static function initializes a thread descriptor (kernel or user).
[438]94// It can be called by the four functions:
[14]95// - thread_user_create()
96// - thread_user_fork()
97// - thread_kernel_create()
[438]98// - thread_idle_init()
[625]99// The "type" and "trdid" fields must have been previously set.
[438]100// It updates the local DQDT.
[14]101/////////////////////////////////////////////////////////////////////////////////////
[625]102// @ thread          : pointer on local thread descriptor
103// @ process         : pointer on local process descriptor.
104// @ type            : thread type.
105// @ trdid           : thread identifier
106// @ func            : pointer on thread entry function.
107// @ args            : pointer on thread entry function arguments.
108// @ core_lid        : target core local index.
109// @ user_stack_vseg : local pointer on user stack vseg (user thread only)
[14]110/////////////////////////////////////////////////////////////////////////////////////
111static error_t thread_init( thread_t      * thread,
112                            process_t     * process,
113                            thread_type_t   type,
[625]114                            trdid_t         trdid,
[14]115                            void          * func,
116                            void          * args,
117                            lid_t           core_lid,
[625]118                            vseg_t        * user_stack_vseg )
[14]119{
120
[635]121// check type and trdid fields are initialized
[625]122assert( (thread->type == type)   , "bad type argument" );
123assert( (thread->trdid == trdid) , "bad trdid argument" );
[14]124
[564]125#if DEBUG_THREAD_INIT
[593]126uint32_t   cycle = (uint32_t)hal_get_cycles();
127thread_t * this  = CURRENT_THREAD;
[564]128if( DEBUG_THREAD_INIT < cycle )
[635]129printk("\n[%s] thread[%x,%x] enter for thread[%x,%x] / cycle %d\n",
130__FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle );
[443]131#endif
132
[407]133    // compute thread descriptor size without kernel stack
134    uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; 
135
[1]136        // Initialize new thread descriptor
137    thread->quantum         = 0;            // TODO
138    thread->ticks_nr        = 0;            // TODO
[457]139    thread->time_last_check = 0;            // TODO
[625]140        thread->core            = &LOCAL_CLUSTER->core_tbl[core_lid];
[1]141        thread->process         = process;
[564]142    thread->busylocks       = 0;
[1]143
[564]144#if DEBUG_BUSYLOCK
145    xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) );
[409]146#endif
[1]147
[625]148    thread->user_stack_vseg = user_stack_vseg;
[407]149    thread->k_stack_base    = (intptr_t)thread + desc_size;
150    thread->k_stack_size    = CONFIG_THREAD_DESC_SIZE - desc_size;
[1]151    thread->entry_func      = func;         // thread entry point
152    thread->entry_args      = args;         // thread function arguments
[171]153    thread->flags           = 0;            // all flags reset
[1]154    thread->errno           = 0;            // no error detected
[407]155    thread->fork_user       = 0;            // no user defined placement for fork
156    thread->fork_cxy        = 0;            // user defined target cluster for fork
[409]157    thread->blocked         = THREAD_BLOCKED_GLOBAL;
[1]158
[564]159    // initialize sched list
[1]160    list_entry_init( &thread->sched_list );
161
[564]162    // initialize waiting queue entries
163    list_entry_init( &thread->wait_list );
164    xlist_entry_init( XPTR( local_cxy , &thread->wait_xlist ) );
165
166    // initialize thread info
[1]167    memset( &thread->info , 0 , sizeof(thread_info_t) );
168
[564]169    // initialize join_lock
170    remote_busylock_init( XPTR( local_cxy , &thread->join_lock ), LOCK_THREAD_JOIN );
[409]171
[1]172    // initialise signature
173        thread->signature = THREAD_SIGNATURE;
174
[443]175    // FIXME define and call an architecture specific hal_thread_init()
176    // function to initialise the save_sr field
[408]177    thread->save_sr = 0xFF13;
178
[171]179    // register new thread in core scheduler
[1]180    sched_register_thread( thread->core , thread );
181
[438]182        // update DQDT
[583]183    dqdt_increment_threads();
[438]184
[641]185#if CONFIG_INSTRUMENTATION_PGFAULTS
186    thread->info.false_pgfault_nr    = 0;
187    thread->info.false_pgfault_cost  = 0;
188    thread->info.false_pgfault_max   = 0;
189    thread->info.local_pgfault_nr    = 0;
190    thread->info.local_pgfault_cost  = 0;
191    thread->info.local_pgfault_max   = 0;
192    thread->info.global_pgfault_nr   = 0;
193    thread->info.global_pgfault_cost = 0;
194    thread->info.global_pgfault_max  = 0;
195#endif
196
[564]197#if DEBUG_THREAD_INIT
[443]198cycle = (uint32_t)hal_get_cycles();
[564]199if( DEBUG_THREAD_INIT < cycle )
[635]200printk("\n[%s] thread[%x,%x] exit for thread[%x,%x] / cycle %d\n",
201__FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle );
[443]202#endif
203
[1]204        return 0;
205
[296]206} // end thread_init()
207
[625]208//////////////////////////////////////////////////
[23]209error_t thread_user_create( pid_t             pid,
210                            void            * start_func,
211                            void            * start_arg,
[1]212                            pthread_attr_t  * attr,
[23]213                            thread_t       ** new_thread )
[1]214{
215    error_t        error;
216        thread_t     * thread;       // pointer on created thread descriptor
[625]217    trdid_t        trdid;        // created thred identifier
[1]218    process_t    * process;      // pointer to local process descriptor
219    lid_t          core_lid;     // selected core local index
[625]220    vseg_t       * us_vseg;      // user stack vseg
[1]221
[593]222assert( (attr != NULL) , "pthread attributes must be defined" );
[5]223
[438]224#if DEBUG_THREAD_USER_CREATE
[593]225thread_t * this  = CURRENT_THREAD;
226uint32_t   cycle = (uint32_t)hal_get_cycles();
[438]227if( DEBUG_THREAD_USER_CREATE < cycle )
[593]228printk("\n[%s] thread[%x,%x] enter in cluster %x for process %x / cycle %d\n",
229__FUNCTION__, this->process->pid , this->trdid , local_cxy , pid , cycle );
[433]230#endif
[428]231
[23]232    // get process descriptor local copy
233    process = process_get_local_copy( pid );
[440]234
[23]235    if( process == NULL )
236    {
237                printk("\n[ERROR] in %s : cannot get process descriptor %x\n",
[625]238        __FUNCTION__ , pid );
239        return -1;
[23]240    }
241
[443]242#if( DEBUG_THREAD_USER_CREATE & 1)
243if( DEBUG_THREAD_USER_CREATE < cycle )
[593]244printk("\n[%s] process descriptor = %x for process %x in cluster %x\n",
[443]245__FUNCTION__, process , pid , local_cxy );
246#endif
247
[171]248    // select a target core in local cluster
[407]249    if( attr->attributes & PT_ATTR_CORE_DEFINED )
[23]250    {
[407]251        core_lid = attr->lid;
252        if( core_lid >= LOCAL_CLUSTER->cores_nr )
253        {
254                printk("\n[ERROR] in %s : illegal core index attribute = %d\n",
255            __FUNCTION__ , core_lid );
[625]256            return -1;
[407]257        }
[23]258    }
[407]259    else
260    {
[637]261        core_lid = cluster_select_local_core( local_cxy );
[407]262    }
[1]263
[443]264#if( DEBUG_THREAD_USER_CREATE & 1)
265if( DEBUG_THREAD_USER_CREATE < cycle )
[593]266printk("\n[%s] core[%x,%d] selected\n",
[443]267__FUNCTION__, local_cxy , core_lid );
268#endif
269
[625]270    // allocate memory for thread descriptor
271    thread = thread_alloc();
[1]272
[625]273    if( thread == NULL )
[23]274    {
[625]275            printk("\n[ERROR] in %s : cannot create new thread in cluster %x\n",
276        __FUNCTION__, local_cxy );
277        return -1;
[171]278    }
[23]279
[457]280#if( DEBUG_THREAD_USER_CREATE & 1)
281if( DEBUG_THREAD_USER_CREATE < cycle )
[625]282printk("\n[%s] new thread descriptor %x allocated\n",
283__FUNCTION__, thread );
[457]284#endif
285
[625]286    // set type in thread descriptor
287    thread->type = THREAD_USER;
[1]288
[625]289    // register new thread in process descriptor, and get a TRDID
290    error = process_register_thread( process, thread , &trdid );
291
292    if( error )
[23]293    {
[625]294        printk("\n[ERROR] in %s : cannot register new thread in process %x\n",
295        __FUNCTION__, pid );
296        thread_destroy( thread );
297        return -1;
[23]298    }
[14]299
[625]300    // set trdid in thread descriptor
301    thread->trdid = trdid;
302
[443]303#if( DEBUG_THREAD_USER_CREATE & 1)
304if( DEBUG_THREAD_USER_CREATE < cycle )
[625]305printk("\n[%s] new thread %x registered in process %x\n",
306__FUNCTION__, trdid, pid );
[443]307#endif
308
[625]309    // allocate a stack from local VMM
310    us_vseg = vmm_create_vseg( process,
311                               VSEG_TYPE_STACK,
312                               LTID_FROM_TRDID( trdid ),
313                               0,                         // size unused
314                               0,                         // file_offset unused
315                               0,                         // file_size unused
316                               XPTR_NULL,                 // mapper_xp unused
317                               local_cxy );
318
319    if( us_vseg == NULL )
320    {
321            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
322        process_remove_thread( thread );
323        thread_destroy( thread );
324                return -1;
325    }
326
327#if( DEBUG_THREAD_USER_CREATE & 1)
328if( DEBUG_THREAD_USER_CREATE < cycle )
329printk("\n[%s] stack vseg created / vpn_base %x / %d pages\n",
330__FUNCTION__, us_vseg->vpn_base, us_vseg->vpn_size );
331#endif
332
[171]333    // initialize thread descriptor
[14]334    error = thread_init( thread,
335                         process,
336                         THREAD_USER,
[625]337                         trdid,
[23]338                         start_func,
339                         start_arg,
[14]340                         core_lid,
[625]341                         us_vseg );
[171]342    if( error )
[14]343    {
[23]344            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
[625]345        vmm_remove_vseg( process , us_vseg );
346        process_remove_thread( thread );
347        thread_destroy( thread );
348        return -1;
[14]349    }
350
[443]351#if( DEBUG_THREAD_USER_CREATE & 1)
352if( DEBUG_THREAD_USER_CREATE < cycle )
[625]353printk("\n[%s] new thread %x in process %x initialised\n",
354__FUNCTION__, thread->trdid, process->pid );
[443]355#endif
356
[14]357    // set DETACHED flag if required
[407]358    if( attr->attributes & PT_ATTR_DETACH ) 
359    {
360        thread->flags |= THREAD_FLAG_DETACHED;
361    }
[1]362
[171]363    // allocate & initialize CPU context
[457]364        if( hal_cpu_context_alloc( thread ) )
[23]365    {
366            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
[625]367        vmm_remove_vseg( process , us_vseg );
368        process_remove_thread( thread );
369        thread_destroy( thread );
370        return -1;
[23]371    }
[457]372    hal_cpu_context_init( thread );
[23]373
[457]374    // allocate & initialize FPU context
[407]375    if( hal_fpu_context_alloc( thread ) )
[23]376    {
377            printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ );
[625]378        vmm_remove_vseg( process , us_vseg );
379        process_remove_thread( thread );
380        thread_destroy( thread );
381        return -1;
[23]382    }
[457]383    hal_fpu_context_init( thread );
[23]384
[457]385#if( DEBUG_THREAD_USER_CREATE & 1)
386if( DEBUG_THREAD_USER_CREATE < cycle )
[593]387printk("\n[%s] CPU & FPU contexts created\n",
[457]388__FUNCTION__, thread->trdid );
[637]389hal_vmm_display( XPTR( local_cxy , process ) , true );
[457]390#endif
391
[438]392#if DEBUG_THREAD_USER_CREATE
[433]393cycle = (uint32_t)hal_get_cycles();
[438]394if( DEBUG_THREAD_USER_CREATE < cycle )
[593]395printk("\n[%s] thread[%x,%x] exit / new_thread %x / core %d / cycle %d\n",
396__FUNCTION__, this->process->pid , this->trdid , thread->trdid, core_lid, cycle );
[433]397#endif
[1]398
399    *new_thread = thread;
400        return 0;
[14]401
[296]402}  // end thread_user_create()
403
[408]404///////////////////////////////////////////////////////
405error_t thread_user_fork( xptr_t      parent_thread_xp,
406                          process_t * child_process,
407                          thread_t ** child_thread )
[1]408{
409    error_t        error;
[625]410        thread_t     * child_ptr;        // local pointer on child thread
411    trdid_t        child_trdid;      // child thread identifier
[408]412    lid_t          core_lid;         // selected core local index
413    thread_t     * parent_ptr;       // local pointer on remote parent thread
414    cxy_t          parent_cxy;       // parent thread cluster
415    process_t    * parent_process;   // local pointer on parent process
416    xptr_t         parent_gpt_xp;    // extended pointer on parent thread GPT
[625]417    void         * parent_func;      // parent thread entry_func
418    void         * parent_args;      // parent thread entry_args
419    uint32_t       parent_flags;     // parent_thread flags
420    vseg_t       * parent_us_vseg;   // parent thread user stack vseg
421    vseg_t       * child_us_vseg;    // child thread user stack vseg
[5]422
[438]423#if DEBUG_THREAD_USER_FORK
[593]424uint32_t   cycle = (uint32_t)hal_get_cycles();
425thread_t * this  = CURRENT_THREAD;
[438]426if( DEBUG_THREAD_USER_FORK < cycle )
[625]427printk("\n[%s] thread[%x,%x] enter for child_process %x / cycle %d\n",
[593]428__FUNCTION__, this->process->pid, this->trdid, child_process->pid, cycle );
[433]429#endif
[408]430
[1]431    // select a target core in local cluster
[637]432    core_lid = cluster_select_local_core( local_cxy );
[1]433
[625]434#if (DEBUG_THREAD_USER_FORK & 1)
435if( DEBUG_THREAD_USER_FORK < cycle )
436printk("\n[%s] thread[%x,%x] selected core [%x,%d]\n",
437__FUNCTION__, this->process->pid, this->trdid, local_cxy, core_lid );
438#endif
439
[408]440    // get cluster and local pointer on parent thread descriptor
441    parent_cxy = GET_CXY( parent_thread_xp );
[469]442    parent_ptr = GET_PTR( parent_thread_xp );
[1]443
[625]444    // get relevant infos from parent thread
445    parent_func    = (void *)  hal_remote_lpt( XPTR(parent_cxy,&parent_ptr->entry_func ));
446    parent_args    = (void *)  hal_remote_lpt( XPTR(parent_cxy,&parent_ptr->entry_args ));
447    parent_flags   = (uint32_t)hal_remote_l32( XPTR(parent_cxy,&parent_ptr->flags ));
448    parent_us_vseg = (vseg_t *)hal_remote_lpt( XPTR(parent_cxy,&parent_ptr->user_stack_vseg ));
[1]449
[408]450    // get pointer on parent process in parent thread cluster
451    parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy,
452                                                        &parent_ptr->process ) );
453 
[625]454    // build extended pointer on parent GPT in parent thread cluster
[408]455    parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt );
456
[625]457#if (DEBUG_THREAD_USER_FORK & 1)
458if( DEBUG_THREAD_USER_FORK < cycle )
459printk("\n[%s] thread[%x,%x] get parent GPT\n",
460__FUNCTION__, this->process->pid, this->trdid );
461#endif
462
[408]463    // allocate memory for child thread descriptor
464    child_ptr = thread_alloc();
[625]465
[408]466    if( child_ptr == NULL )
[23]467    {
[625]468        printk("\n[ERROR] in %s : cannot allocate new thread\n",
469        __FUNCTION__ );
[408]470        return -1;
[23]471    }
[14]472
[625]473#if (DEBUG_THREAD_USER_FORK & 1)
474if( DEBUG_THREAD_USER_FORK < cycle )
475printk("\n[%s] thread[%x,%x] allocated new thread descriptor %x\n",
476__FUNCTION__, this->process->pid, this->trdid, child_ptr );
477#endif
478
479    // set type in thread descriptor
480    child_ptr->type = THREAD_USER;
481
482    // register new thread in process descriptor, and get a TRDID
483    error = process_register_thread( child_process, child_ptr , &child_trdid );
484
485    if( error )
486    {
487        printk("\n[ERROR] in %s : cannot register new thread in process %x\n",
488        __FUNCTION__, child_process->pid );
489        thread_destroy( child_ptr );
490        return -1;
491    }
492
493    // set trdid in thread descriptor
494    child_ptr->trdid = child_trdid;
495
496#if (DEBUG_THREAD_USER_FORK & 1)
497if( DEBUG_THREAD_USER_FORK < cycle )
498printk("\n[%s] thread[%x,%x] registered child thread %x in child process %x\n",
499__FUNCTION__, this->process->pid, this->trdid, child_trdid, child_process->pid );
500#endif
501
502    // get an user stack vseg from local VMM allocator
503    child_us_vseg = vmm_create_vseg( child_process,
504                                     VSEG_TYPE_STACK,
505                                     LTID_FROM_TRDID( child_trdid ), 
506                                     0,                               // size unused
507                                     0,                               // file_offset unused
508                                     0,                               // file_size unused
509                                     XPTR_NULL,                       // mapper_xp unused
510                                     local_cxy );
511    if( child_us_vseg == NULL )
512    {
513            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
514        process_remove_thread( child_ptr );
515        thread_destroy( child_ptr );
516        return -1;
517    }
518
519#if (DEBUG_THREAD_USER_FORK & 1)
520if( DEBUG_THREAD_USER_FORK < cycle )
521printk("\n[%s] thread[%x,%x] created an user stack vseg / vpn_base %x / %d pages\n",
522__FUNCTION__, this->process->pid, this->trdid,
523child_us_vseg->vpn_base, child_us_vseg->vpn_size );
524#endif
525
[171]526    // initialize thread descriptor
[408]527    error = thread_init( child_ptr,
528                         child_process,
[14]529                         THREAD_USER,
[625]530                         child_trdid,
531                         parent_func,
532                         parent_args,
[14]533                         core_lid,
[625]534                         child_us_vseg );
[23]535    if( error )
[14]536    {
[408]537            printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ );
[625]538        vmm_remove_vseg( child_process , child_us_vseg ); 
539        process_remove_thread( child_ptr );
540        thread_destroy( child_ptr );
541        return -1;
[14]542    }
543
[564]544#if (DEBUG_THREAD_USER_FORK & 1)
545if( DEBUG_THREAD_USER_FORK < cycle )
[593]546printk("\n[%s] thread[%x,%x] initialised thread %x in process %x\n",
547__FUNCTION__, this->process->pid, this->trdid, child_ptr->trdid, child_process->pid );
[564]548#endif
549
[408]550    // set detached flag if required
[625]551    if( parent_flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED;
[1]552
[625]553    // allocate a CPU context for child thread
[408]554        if( hal_cpu_context_alloc( child_ptr ) )
[23]555    {
[407]556            printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ );
[625]557        vmm_remove_vseg( child_process , child_us_vseg );
558        process_remove_thread( child_ptr );
559        thread_destroy( child_ptr );
[408]560        return -1;
[23]561    }
562
[625]563    // allocate a FPU context for child thread
[408]564        if( hal_fpu_context_alloc( child_ptr ) )
[23]565    {
[407]566            printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ );
[625]567        vmm_remove_vseg( child_process , child_us_vseg );
568        process_remove_thread( child_ptr );
569        thread_destroy( child_ptr );
[408]570        return -1;
[23]571    }
572
[564]573#if (DEBUG_THREAD_USER_FORK & 1)
574if( DEBUG_THREAD_USER_FORK < cycle )
[593]575printk("\n[%s] thread[%x,%x] created CPU & FPU contexts for thread %x in process %x\n",
576__FUNCTION__, this->process->pid, this->trdid, child_ptr->trdid, child_process->pid );
[564]577#endif
578
[625]579    // scan parent GPT, and copy all valid entries
580    // associated to user stack vseg into child GPT
581    vpn_t  parent_vpn;
582    vpn_t  child_vpn;
583    bool_t mapped;
584    ppn_t  ppn;
585    vpn_t  parent_vpn_base = hal_remote_l32( XPTR( parent_cxy, &parent_us_vseg->vpn_base ) );
586    vpn_t  parent_vpn_size = hal_remote_l32( XPTR( parent_cxy, &parent_us_vseg->vpn_size ) );
587    vpn_t  child_vpn_base  = child_us_vseg->vpn_base;
[635]588
[625]589    for( parent_vpn = parent_vpn_base , child_vpn = child_vpn_base ; 
590         parent_vpn < (parent_vpn_base + parent_vpn_size) ;
591         parent_vpn++ , child_vpn++ )
[408]592    {
593        error = hal_gpt_pte_copy( &child_process->vmm.gpt,
[625]594                                  child_vpn,
[408]595                                  parent_gpt_xp,
[625]596                                  parent_vpn,
[408]597                                  true,                 // set cow
598                                  &ppn,
599                                  &mapped );
600        if( error )
601        {
602            printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ );
[625]603            vmm_remove_vseg( child_process , child_us_vseg );
604            process_remove_thread( child_ptr );
605            thread_destroy( child_ptr );
[408]606            return -1;
607        }
608
[625]609        // increment pending forks counter for a mapped page
[408]610        if( mapped )
611        {
[469]612            // get pointers on the page descriptor
[408]613            xptr_t   page_xp  = ppm_ppn2page( ppn );
614            cxy_t    page_cxy = GET_CXY( page_xp );
[469]615            page_t * page_ptr = GET_PTR( page_xp );
616
[625]617            // build extended pointers on forks and lock fields
[469]618            xptr_t forks_xp = XPTR( page_cxy , &page_ptr->forks );
619            xptr_t lock_xp  = XPTR( page_cxy , &page_ptr->lock );
620
[564]621            // get lock protecting page
622            remote_busylock_acquire( lock_xp ); 
623
624            // increment the forks counter in page descriptor
[473]625            hal_remote_atomic_add( forks_xp , 1 );
[408]626
[564]627            // release lock protecting page
628            remote_busylock_release( lock_xp ); 
[625]629        }
630    }
[564]631
[438]632#if (DEBUG_THREAD_USER_FORK & 1)
633if( DEBUG_THREAD_USER_FORK < cycle )
[635]634printk("\n[%s] thread[%x,%x] copied STACK vseg PTEs & set COW in child GPT\n",
[625]635__FUNCTION__, this->process->pid, this->trdid );
[433]636#endif
[408]637
[625]638    // set COW flag for all mapped entries of user stack vseg in parent GPT
639    hal_gpt_set_cow( parent_gpt_xp,
640                     parent_vpn_base,
641                     parent_vpn_size );
[408]642
[625]643#if (DEBUG_THREAD_USER_FORK & 1)
644if( DEBUG_THREAD_USER_FORK < cycle )
[635]645printk("\n[%s] thread[%x,%x] set COW for STACK vseg in parent GPT\n",
[625]646__FUNCTION__, this->process->pid, this->trdid );
647#endif
648
649    // return child pointer
650    *child_thread = child_ptr;
651
[438]652#if DEBUG_THREAD_USER_FORK
[433]653cycle = (uint32_t)hal_get_cycles();
[438]654if( DEBUG_THREAD_USER_FORK < cycle )
[625]655printk("\n[%s] thread[%x,%x] exit / created thread[%x,%x] / cycle %d\n",
656__FUNCTION__, this->process->pid, this->trdid,
657child_ptr->process->pid, child_ptr->trdid, cycle );
[433]658#endif
[407]659
[1]660        return 0;
[5]661
[296]662}  // end thread_user_fork()
663
[457]664////////////////////////////////////////////////
665error_t thread_user_exec( void     * entry_func,
666                          uint32_t   argc,
667                          char    ** argv )
668{
669    thread_t  * thread  = CURRENT_THREAD;
670    process_t * process = thread->process;
671
672#if DEBUG_THREAD_USER_EXEC
673uint32_t cycle = (uint32_t)hal_get_cycles();
674if( DEBUG_THREAD_USER_EXEC < cycle )
[651]675printk("\n[%s] thread[%x,%x] enter / entry %x / cycle %d\n",
676__FUNCTION__, process->pid, thread->trdid, entry_func , cycle );
[457]677#endif
678
[564]679// check parent thread attributes
680assert( (thread->type == THREAD_USER )          , "bad type" );
681assert( (thread->signature == THREAD_SIGNATURE) , "bad signature" );
682assert( (thread->busylocks == 0)                , "bad busylocks" );
[457]683
684        // re-initialize various thread descriptor fields
685    thread->quantum         = 0;            // TODO
686    thread->ticks_nr        = 0;            // TODO
687    thread->time_last_check = 0;            // TODO
688
689    thread->entry_func      = entry_func;
690    thread->main_argc       = argc; 
691    thread->main_argv       = argv;
692
693    // the main thread is always detached
694    thread->flags           = THREAD_FLAG_DETACHED;
695    thread->blocked         = 0;
696    thread->errno           = 0;
697    thread->fork_user       = 0;    // not inherited
698    thread->fork_cxy        = 0;    // not inherited
699
[564]700    // re-initialize busylocks counters
701    thread->busylocks       = 0;
702
[457]703    // reset thread info
704    memset( &thread->info , 0 , sizeof(thread_info_t) );
705
[564]706    // re-initialize join_lock
707    remote_busylock_init( XPTR( local_cxy , &thread->join_lock ), LOCK_THREAD_JOIN );
[457]708
709    // allocate an user stack vseg for main thread
[625]710    vseg_t * us_vseg = vmm_create_vseg( process,
711                                        VSEG_TYPE_STACK,
712                                        LTID_FROM_TRDID( thread->trdid ),
713                                        0,                 // length unused
714                                        0,                 // file_offset unused
715                                        0,                 // file_size unused
716                                        XPTR_NULL,         // mapper_xp unused
717                                        local_cxy );
718    if( us_vseg == NULL )
[457]719    {
720            printk("\n[ERROR] in %s : cannot create stack vseg for main thread\n", __FUNCTION__ );
721                return -1;
722    }
723
[469]724    // update user stack in thread descriptor
[625]725    thread->user_stack_vseg = us_vseg;
[457]726   
727    // release FPU ownership if required
728    if( thread->core->fpu_owner == thread ) thread->core->fpu_owner = NULL;
729
730    // re-initialize  FPU context
731    hal_fpu_context_init( thread );
732
733#if DEBUG_THREAD_USER_EXEC
734cycle = (uint32_t)hal_get_cycles();
735if( DEBUG_THREAD_USER_EXEC < cycle )
[593]736printk("\n[%s] thread[%x,%x] set CPU context & jump to user code / cycle %d\n",
737__FUNCTION__, process->pid, thread->trdid, cycle );
[637]738hal_vmm_display( XPTR( local_cxy , process ) , true );
[457]739#endif
740
741    // re-initialize CPU context... and jump to user code
742        hal_cpu_context_exec( thread );
743
[564]744    assert( false, "we should not execute this code");
[457]745 
746    return 0;
747
748}  // end thread_user_exec()
749
[1]750/////////////////////////////////////////////////////////
751error_t thread_kernel_create( thread_t     ** new_thread,
752                              thread_type_t   type,
[171]753                              void          * func,
754                              void          * args,
[1]755                                              lid_t           core_lid )
756{
757    error_t        error;
[14]758        thread_t     * thread;       // pointer on new thread descriptor
[625]759    trdid_t        trdid;        // new thread identifier
[1]760
[593]761    thread_t * this = CURRENT_THREAD; 
[1]762
[593]763assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) ,
764"illegal thread type" );
[1]765
[593]766assert( (core_lid < LOCAL_CLUSTER->cores_nr) ,
767"illegal core_lid" );
768
[438]769#if DEBUG_THREAD_KERNEL_CREATE
[593]770uint32_t   cycle = (uint32_t)hal_get_cycles();
[438]771if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[593]772printk("\n[%s] thread[%x,%x] enter / requested_type %s / cycle %d\n",
773__FUNCTION__, this->process->pid, this->trdid, thread_type_str(type), cycle );
[433]774#endif
775
[171]776    // allocate memory for new thread descriptor
[14]777    thread = thread_alloc();
778
[581]779    if( thread == NULL )
780    {
781        printk("\n[ERROR] in %s : thread %x in process %x\n"
782        "   no memory for thread descriptor\n",
[593]783        __FUNCTION__, this->trdid, this->process->pid );
[581]784        return ENOMEM;
785    }
[14]786
[625]787    // set type in thread descriptor
788    thread->type = type;
789
790    // register new thread in local kernel process descriptor, and get a TRDID
791    error = process_register_thread( &process_zero , thread , &trdid );
792
793    if( error )
794    {
795        printk("\n[ERROR] in %s : cannot register thread in kernel process\n", __FUNCTION__ );
796        return -1;
797    }
798
799    // set trdid in thread descriptor
800    thread->trdid = trdid;
801
[171]802    // initialize thread descriptor
[14]803    error = thread_init( thread,
804                         &process_zero,
805                         type,
[625]806                         trdid,
[14]807                         func,
808                         args,
809                         core_lid,
[625]810                         NULL );  // no user stack for a kernel thread
[14]811
[171]812    if( error ) // release allocated memory for thread descriptor
[1]813    {
[625]814        printk("\n[ERROR] in %s : cannot initialize thread descriptor\n", __FUNCTION__ );
815        thread_destroy( thread );
[457]816        return ENOMEM;
[1]817    }
818
[171]819    // allocate & initialize CPU context
[457]820        error = hal_cpu_context_alloc( thread );
[581]821
[457]822    if( error )
823    {
[581]824        printk("\n[ERROR] in %s : thread %x in process %x\n"
[593]825        "    cannot create CPU context\n",
826        __FUNCTION__, this->trdid, this->process->pid );
[625]827        thread_destroy( thread );
[457]828        return EINVAL;
829    }
[581]830
[457]831    hal_cpu_context_init( thread );
[14]832
[583]833    // set THREAD_BLOCKED_IDLE for DEV threads
834    if( type == THREAD_DEV ) thread->blocked |= THREAD_BLOCKED_IDLE;
[457]835
[438]836#if DEBUG_THREAD_KERNEL_CREATE
[433]837cycle = (uint32_t)hal_get_cycles();
[438]838if( DEBUG_THREAD_KERNEL_CREATE < cycle )
[593]839printk("\n[%s] thread[%x,%x] exit / new_thread %x / type %s / cycle %d\n",
840__FUNCTION__, this->process->pid, this->trdid, thread, thread_type_str(type), cycle );
[433]841#endif
[1]842
[171]843    *new_thread = thread;
[1]844        return 0;
[5]845
[296]846} // end thread_kernel_create()
847
[457]848//////////////////////////////////////////////
849void thread_idle_init( thread_t      * thread,
850                       thread_type_t   type,
851                       void          * func,
852                       void          * args,
853                           lid_t           core_lid )
[14]854{
[625]855    trdid_t trdid;   
856    error_t error;
[14]857
[564]858// check arguments
859assert( (type == THREAD_IDLE) , "illegal thread type" );
860assert( (core_lid < LOCAL_CLUSTER->cores_nr) , "illegal core index" );
861
[625]862    // set type in thread descriptor
863    thread->type = THREAD_IDLE;
864
865    // register idle thread in local kernel process descriptor, and get a TRDID
866    error = process_register_thread( &process_zero , thread , &trdid );
867
868assert( (error == 0), "cannot register idle_thread in kernel process" );
869
870    // set trdid in thread descriptor
871    thread->trdid = trdid;
872
[457]873    // initialize thread descriptor
[625]874    error = thread_init( thread,
875                         &process_zero,
876                         THREAD_IDLE,
877                         trdid,
878                         func,
879                         args,
880                         core_lid,
881                         NULL );   // no user stack for a kernel thread
[14]882
[625]883assert( (error == 0), "cannot initialize idle_thread" );
[457]884
[14]885    // allocate & initialize CPU context if success
[457]886    error = hal_cpu_context_alloc( thread );
[171]887
[625]888assert( (error == 0), "cannot allocate CPU context" );
[14]889
[457]890    hal_cpu_context_init( thread );
891
[438]892}  // end thread_idle_init()
[407]893
[625]894////////////////////////////////////////////
895uint32_t thread_destroy( thread_t * thread )
[1]896{
[625]897    reg_t           save_sr;
898    uint32_t        count;
[1]899
[625]900    thread_type_t   type    = thread->type;
901    process_t     * process = thread->process;
902    core_t        * core    = thread->core;
[1]903
[641]904#if DEBUG_THREAD_DESTROY
[640]905uint32_t   cycle;
[583]906thread_t * this  = CURRENT_THREAD;
[640]907#endif
908
909#if (DEBUG_THREAD_DESTROY & 1)
910cycle = (uint32_t)hal_get_cycles();
[438]911if( DEBUG_THREAD_DESTROY < cycle )
[593]912printk("\n[%s] thread[%x,%x] enter to destroy thread[%x,%x] / cycle %d\n",
[583]913__FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle );
[433]914#endif
[1]915
[625]916    // check calling thread busylocks counter
[583]917    thread_assert_can_yield( thread , __FUNCTION__ );
[171]918
[635]919#if CONFIG_INSTRUMENTATION_PGFAULTS
[640]920process->vmm.false_pgfault_nr    += thread->info.false_pgfault_nr;
[641]921process->vmm.false_pgfault_cost  += thread->info.false_pgfault_cost;
[640]922process->vmm.local_pgfault_nr    += thread->info.local_pgfault_nr;
[641]923process->vmm.local_pgfault_cost  += thread->info.local_pgfault_cost;
[640]924process->vmm.global_pgfault_nr   += thread->info.global_pgfault_nr;
925process->vmm.global_pgfault_cost += thread->info.global_pgfault_cost;
[635]926#endif
[1]927
[640]928#if (CONFIG_INSTRUMENTATION_PGFAULTS & 1)
929uint32_t false_nr    = thread->info.false_pgfault_nr;
[641]930uint32_t false_cost  = thread->info.false_pgfault_cost;
931uint32_t false_max   = thread->info.false_pgfault_max;
932uint32_t false_one   = false_nr  ? (false_cost  / false_nr ) : 0;
933
[640]934uint32_t local_nr    = thread->info.local_pgfault_nr;
[641]935uint32_t local_cost  = thread->info.local_pgfault_cost;
936uint32_t local_max   = thread->info.local_pgfault_max;
937uint32_t local_one   = local_nr  ? (local_cost  / local_nr ) : 0;
938
[640]939uint32_t global_nr   = thread->info.global_pgfault_nr;
940uint32_t global_cost = thread->info.global_pgfault_cost;
[641]941uint32_t global_max  = thread->info.global_pgfault_max;
942uint32_t global_one  = global_nr ? (global_cost / global_nr) : 0;
943
[647]944printk("\n***** thread[%x,%x] page faults\n"
[641]945       " - false  : %d events / cost %d cycles / max %d cycles\n"
946       " - local  : %d events / cost %d cycles / max %d cycles\n"
947       " - global : %d events / cost %d cycles / max %d cycles\n",
948       thread->process->pid, thread->trdid,
949       false_nr , false_one , false_max,
950       local_nr , local_one , local_max,
951       global_nr, global_one, global_max );
[640]952#endif
953
[625]954    // remove thread from process th_tbl[]
955    count = process_remove_thread( thread );
956
[635]957    // release memory allocated for CPU context and FPU context
[1]958        hal_cpu_context_destroy( thread );
[625]959        hal_fpu_context_destroy( thread );
[1]960       
[625]961    // release user stack vseg (for an user thread only)
962    if( type == THREAD_USER )  vmm_remove_vseg( process , thread->user_stack_vseg );
963
[428]964    // release FPU ownership if required
[409]965        hal_disable_irq( &save_sr );
[1]966        if( core->fpu_owner == thread )
967        {
968                core->fpu_owner = NULL;
969                hal_fpu_disable();
970        }
[409]971        hal_restore_irq( save_sr );
[1]972
973    // invalidate thread descriptor
974        thread->signature = 0;
975
[625]976    // release memory for thread descriptor (including kernel stack)
977    kmem_req_t   req;
[635]978    req.type  = KMEM_PPM;
979    req.ptr   = thread;
[625]980    kmem_free( &req );
981
[438]982#if DEBUG_THREAD_DESTROY
[433]983cycle = (uint32_t)hal_get_cycles();
[438]984if( DEBUG_THREAD_DESTROY < cycle )
[593]985printk("\n[%s] thread[%x,%x] exit / destroyed thread[%x,%x] / cycle %d\n",
[583]986__FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle );
[433]987#endif
[1]988
[625]989    return count;
990
[407]991}   // end thread_destroy()
992
[416]993//////////////////////////////////////////////////
994inline void thread_set_req_ack( thread_t * target,
995                                uint32_t * rsp_count )
[1]996{
[409]997    reg_t    save_sr;   // for critical section
998
[416]999    // get pointer on target thread scheduler
1000    scheduler_t * sched = &target->core->scheduler;
[409]1001
[416]1002    // wait scheduler ready to handle a new request
1003    while( sched->req_ack_pending ) asm volatile( "nop" );
[409]1004   
1005    // enter critical section
1006    hal_disable_irq( &save_sr );
1007     
[416]1008    // set request in target thread scheduler
1009    sched->req_ack_pending = true;
[409]1010
[416]1011    // set ack request in target thread "flags"
1012    hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK );
[409]1013
[416]1014    // set pointer on responses counter in target thread
1015    target->ack_rsp_count = rsp_count;
[409]1016   
1017    // exit critical section
1018    hal_restore_irq( save_sr );
1019
[407]1020    hal_fence();
[171]1021
[416]1022}  // thread_set_req_ack()
[409]1023
[416]1024/////////////////////////////////////////////////////
1025inline void thread_reset_req_ack( thread_t * target )
[1]1026{
[409]1027    reg_t    save_sr;   // for critical section
1028
1029    // get pointer on target thread scheduler
[416]1030    scheduler_t * sched = &target->core->scheduler;
[409]1031
1032    // check signal pending in scheduler
[492]1033    assert( sched->req_ack_pending , "no pending signal" );
[409]1034   
1035    // enter critical section
1036    hal_disable_irq( &save_sr );
1037     
1038    // reset signal in scheduler
[416]1039    sched->req_ack_pending = false;
[409]1040
1041    // reset signal in thread "flags"
[416]1042    hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK );
[409]1043
1044    // reset pointer on responses counter
[416]1045    target->ack_rsp_count = NULL;
[409]1046   
1047    // exit critical section
1048    hal_restore_irq( save_sr );
1049
[407]1050    hal_fence();
[171]1051
[416]1052}  // thread_reset_req_ack()
[409]1053
[436]1054//////////////////////////////////////
1055void thread_block( xptr_t   thread_xp,
1056                   uint32_t cause )
[407]1057{
[436]1058    // get thread cluster and local pointer
1059    cxy_t      cxy = GET_CXY( thread_xp );
1060    thread_t * ptr = GET_PTR( thread_xp );
1061
[407]1062    // set blocking cause
[436]1063    hal_remote_atomic_or( XPTR( cxy , &ptr->blocked ) , cause );
[407]1064    hal_fence();
1065
[438]1066#if DEBUG_THREAD_BLOCK
[457]1067uint32_t    cycle   = (uint32_t)hal_get_cycles();
1068process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) );
[593]1069thread_t  * this    = CURRENT_THREAD;
[438]1070if( DEBUG_THREAD_BLOCK < cycle )
[593]1071printk("\n[%s] thread[%x,%x] blocked thread %x in process %x / cause %x\n",
1072__FUNCTION__, this->process->pid, this->trdid,
[564]1073ptr->trdid, hal_remote_l32(XPTR( cxy , &process->pid )), cause );
[433]1074#endif
1075
[407]1076} // end thread_block()
1077
[433]1078////////////////////////////////////////////
1079uint32_t thread_unblock( xptr_t   thread_xp,
[407]1080                         uint32_t cause )
1081{
1082    // get thread cluster and local pointer
[433]1083    cxy_t      cxy = GET_CXY( thread_xp );
1084    thread_t * ptr = GET_PTR( thread_xp );
[407]1085
1086    // reset blocking cause
1087    uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause );
1088    hal_fence();
1089
[438]1090#if DEBUG_THREAD_BLOCK
[457]1091uint32_t    cycle   = (uint32_t)hal_get_cycles();
1092process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) );
[593]1093thread_t  * this    = CURRENT_THREAD;
[438]1094if( DEBUG_THREAD_BLOCK < cycle )
[593]1095printk("\n[%s] thread[%x,%x] unblocked thread %x in process %x / cause %x\n",
1096__FUNCTION__, this->process->pid, this->trdid,
[564]1097ptr->trdid, hal_remote_l32(XPTR( cxy , &process->pid )), cause );
[433]1098#endif
1099
[446]1100    // return a non zero value if the cause bit is modified
1101    return( previous & cause );
[436]1102
[446]1103}  // end thread_unblock()
[407]1104
[440]1105//////////////////////////////////////
1106void thread_delete( xptr_t  target_xp,
1107                    bool_t  is_forced )
1108{
1109    reg_t       save_sr;                // for critical section
1110    bool_t      target_join_done;       // joining thread arrived first
1111    bool_t      target_attached;        // target thread attached
1112    xptr_t      killer_xp;              // extended pointer on killer thread (this)
1113    thread_t  * killer_ptr;             // pointer on killer thread (this)
1114    cxy_t       target_cxy;             // target thread cluster     
1115    thread_t  * target_ptr;             // pointer on target thread
[651]1116    process_t * target_process;         // pointer on target process
[625]1117    pid_t       target_pid;             // target process identifier
[440]1118    xptr_t      target_flags_xp;        // extended pointer on target thread <flags>
1119    xptr_t      target_join_lock_xp;    // extended pointer on target thread <join_lock>
1120    xptr_t      target_join_xp_xp;      // extended pointer on target thread <join_xp>
1121    trdid_t     target_trdid;           // target thread identifier
1122    ltid_t      target_ltid;            // target thread local index
[651]1123    uint32_t    target_flags;           // target thread flags
[440]1124    xptr_t      joining_xp;             // extended pointer on joining thread
[651]1125    thread_t  * joining_ptr;            // local pointer on joining thread
1126    cxy_t       joining_cxy;            // joining thread cluster
[440]1127
[564]1128    // get target thread cluster and local pointer
[440]1129    target_cxy      = GET_CXY( target_xp );
1130    target_ptr      = GET_PTR( target_xp );
[564]1131
[651]1132    // get target thread trdid, ltid, flags, and process PID
[564]1133    target_trdid    = hal_remote_l32( XPTR( target_cxy , &target_ptr->trdid ) );
[440]1134    target_ltid     = LTID_FROM_TRDID( target_trdid );
[651]1135    target_flags_xp = XPTR( target_cxy , &target_ptr->flags );
1136    target_flags    = hal_remote_l32( target_flags_xp );
[625]1137    target_process  = hal_remote_lpt( XPTR( target_cxy , &target_ptr->process ) );
1138    target_pid      = hal_remote_l32( XPTR( target_cxy , &target_process->pid ) );
[651]1139    target_attached = ((target_flags & THREAD_FLAG_DETACHED) == 0); 
[440]1140
1141    // get killer thread pointers
1142    killer_ptr = CURRENT_THREAD;
1143    killer_xp  = XPTR( local_cxy , killer_ptr );
1144
1145#if DEBUG_THREAD_DELETE
[564]1146uint32_t cycle  = (uint32_t)hal_get_cycles();
[440]1147if( DEBUG_THREAD_DELETE < cycle )
[651]1148printk("\n[%s] killer[%x,%x] enters / target[%x,%x] / forced %d / flags %x / cycle %d\n",
[583]1149__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid, 
[651]1150target_pid, target_trdid, is_forced, target_flags, cycle );
[440]1151#endif
1152
[564]1153// check target thread is not the main thread, because the main thread
1154// must be deleted by the parent process sys_wait() function
[651]1155assert( ((CXY_FROM_PID( target_pid ) != target_cxy) || (target_ltid != 0)),
[625]1156"target thread cannot be the main thread" );
[564]1157
[583]1158    // check killer thread can yield
1159    thread_assert_can_yield( killer_ptr , __FUNCTION__ ); 
[440]1160
[583]1161    // if the target thread is attached, we must synchonize with the joining thread
1162    // before blocking and marking the target thead for delete.
1163
1164    if( target_attached && (is_forced == false) ) // synchronize with joining thread
[564]1165    {
[440]1166        // build extended pointers on target thread join fields
1167        target_join_lock_xp  = XPTR( target_cxy , &target_ptr->join_lock );
1168        target_join_xp_xp    = XPTR( target_cxy , &target_ptr->join_xp );
1169
1170        // enter critical section
1171        hal_disable_irq( &save_sr );
1172
1173        // take the join_lock in target thread descriptor
[564]1174        remote_busylock_acquire( target_join_lock_xp );
[440]1175
1176        // get join_done from target thread descriptor
[564]1177        target_join_done = ((hal_remote_l32( target_flags_xp ) & THREAD_FLAG_JOIN_DONE) != 0);
[440]1178   
[583]1179        if( target_join_done )                     // joining thread arrived first
[440]1180        {
1181            // get extended pointer on joining thread
[564]1182            joining_xp  = (xptr_t)hal_remote_l64( target_join_xp_xp );
[651]1183
1184            // get cluster and local pointer on joining thread
1185            joining_ptr = GET_PTR( joining_xp );
1186            joining_cxy = GET_CXY( joining_xp );
1187
1188            // copy exit_status from target thread to joining thread, because
1189            // target thread may be deleted before joining thread resume
1190            void * status = hal_remote_lpt( XPTR( target_cxy , &target_ptr->exit_status ) );
1191            hal_remote_spt( XPTR( joining_cxy , &joining_ptr->exit_status ) , status );
[440]1192           
1193            // reset the join_done flag in target thread
1194            hal_remote_atomic_and( target_flags_xp , ~THREAD_FLAG_JOIN_DONE );
1195
1196            // unblock the joining thread
1197            thread_unblock( joining_xp , THREAD_BLOCKED_JOIN );
1198
1199            // release the join_lock in target thread descriptor
[564]1200            remote_busylock_release( target_join_lock_xp );
[440]1201
[583]1202            // block the target thread
1203            thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
1204
[564]1205            // set the REQ_DELETE flag in target thread descriptor
1206            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
1207
[583]1208            // exit critical section
[440]1209            hal_restore_irq( save_sr );
[564]1210
[583]1211#if DEBUG_THREAD_DELETE
[651]1212cycle  = (uint32_t)hal_get_cycles();
[564]1213if( DEBUG_THREAD_DELETE < cycle )
[593]1214printk("\n[%s] killer[%x,%x] exit / target[%x,%x] marked after join / cycle %d\n",
[583]1215__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
[651]1216target_pid, target_trdid, cycle );
[564]1217#endif
[583]1218
1219        }
1220        else                                      // killer thread arrived first
1221        {
[440]1222            // set the kill_done flag in target thread
1223            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_KILL_DONE );
1224
[651]1225            // block target thread on BLOCKED_JOIN
[440]1226            thread_block( killer_xp , THREAD_BLOCKED_JOIN );
1227
1228            // set extended pointer on killer thread in target thread
[564]1229            hal_remote_s64( target_join_xp_xp , killer_xp );
[440]1230
1231            // release the join_lock in target thread descriptor
[564]1232            remote_busylock_release( target_join_lock_xp );
[440]1233
[583]1234#if DEBUG_THREAD_DELETE
[651]1235cycle  = (uint32_t)hal_get_cycles();
[564]1236if( DEBUG_THREAD_DELETE < cycle )
[593]1237printk("\n[%s] killer[%x,%x] deschedules / target[%x,%x] not completed / cycle %d\n",
[583]1238__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
[651]1239target_pid, target_trdid, cycle );
[564]1240#endif
[440]1241            // deschedule
1242            sched_yield( "killer thread wait joining thread" );
1243
[583]1244            // block the target thread
1245            thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
1246
[564]1247            // set the REQ_DELETE flag in target thread descriptor
1248            hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
1249
[583]1250            // exit critical section
[440]1251            hal_restore_irq( save_sr );
[583]1252
1253#if DEBUG_THREAD_DELETE
[651]1254cycle  = (uint32_t)hal_get_cycles();
[583]1255if( DEBUG_THREAD_DELETE < cycle )
[593]1256printk("\n[%s] killer[%x,%x] exit / target[%x,%x] marked after join / cycle %d\n",
[583]1257__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
[651]1258target_pid, target_trdid, cycle );
[583]1259#endif
1260
[440]1261        }
[564]1262    }
[583]1263    else                     // no synchronization with joining thread required
[564]1264    {
[583]1265        // block the target thread
1266        thread_block( target_xp , THREAD_BLOCKED_GLOBAL );
1267
[564]1268        // set the REQ_DELETE flag in target thread descriptor
1269        hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE );
[440]1270
1271#if DEBUG_THREAD_DELETE
[651]1272cycle  = (uint32_t)hal_get_cycles();
[440]1273if( DEBUG_THREAD_DELETE < cycle )
[593]1274printk("\n[%s] killer[%x,%x] exit / target [%x,%x] marked / no join / cycle %d\n",
[583]1275__FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid,
[651]1276target_pid, target_trdid, cycle );
[440]1277#endif
1278
[583]1279    }
[440]1280}  // end thread_delete()
1281
1282
1283
[564]1284/////////////////////////////
[485]1285void thread_idle_func( void )
[1]1286{
[625]1287
1288#if DEBUG_THREAD_IDLE
1289uint32_t cycle;
1290#endif
1291
[1]1292    while( 1 )
1293    {
[408]1294        // unmask IRQs
1295        hal_enable_irq( NULL );
1296
[443]1297        // force core to low-power mode (optional)
[583]1298        if( CONFIG_SCHED_IDLE_MODE_SLEEP ) 
[407]1299        {
[1]1300
[564]1301#if DEBUG_THREAD_IDLE
[625]1302cycle = (uint32_t)hal_get_cycles();
[438]1303if( DEBUG_THREAD_IDLE < cycle )
[593]1304printk("\n[%s] idle thread on core[%x,%d] goes to sleep / cycle %d\n",
[446]1305__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle );
[433]1306#endif
[1]1307
[407]1308            hal_core_sleep();
[1]1309
[564]1310#if DEBUG_THREAD_IDLE
[625]1311cycle = (uint32_t)hal_get_cycles();
[438]1312if( DEBUG_THREAD_IDLE < cycle )
[593]1313printk("\n[%s] idle thread on core[%x,%d] wake up / cycle %d\n",
[531]1314__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle );
[433]1315#endif
[407]1316
1317        }
[443]1318
[446]1319#if DEBUG_THREAD_IDLE
[625]1320cycle = (uint32_t)hal_get_cycles();
[564]1321if( DEBUG_THREAD_IDLE < cycle )
[640]1322sched_remote_display( local_cxy , CURRENT_THREAD->core->lid );
[446]1323#endif     
[564]1324        // search a runable thread
1325        sched_yield( "running idle thread" );
[446]1326
[564]1327    } // end while
1328
[407]1329}  // end thread_idle()
[1]1330
[407]1331
[473]1332///////////////////////////////////////////
1333void thread_time_update( thread_t * thread,
[564]1334                         bool_t     is_user )
[16]1335{
[473]1336    cycle_t current_cycle;   // current cycle counter value
1337    cycle_t last_cycle;      // last cycle counter value
[1]1338
[473]1339    // get pointer on thread_info structure
1340    thread_info_t * info = &thread->info;
1341
1342    // get last cycle counter value
1343    last_cycle = info->last_cycle;
1344
1345    // get current cycle counter value
1346    current_cycle = hal_get_cycles();
1347
1348    // update thread_info structure
1349    info->last_cycle = current_cycle;
1350
1351    // update time in thread_info
1352    if( is_user ) info->usr_cycles += (current_cycle - last_cycle);
1353    else          info->sys_cycles += (current_cycle - last_cycle);
[16]1354
[564]1355}  // end thread_time_update()
1356
[23]1357/////////////////////////////////////
1358xptr_t thread_get_xptr( pid_t    pid,
1359                        trdid_t  trdid )
1360{
1361    cxy_t         target_cxy;          // target thread cluster identifier
1362    ltid_t        target_thread_ltid;  // target thread local index
[171]1363    thread_t    * target_thread_ptr;   // target thread local pointer
[23]1364    xptr_t        target_process_xp;   // extended pointer on target process descriptor
[171]1365    process_t   * target_process_ptr;  // local pointer on target process descriptor
[23]1366    pid_t         target_process_pid;  // target process identifier
1367    xlist_entry_t root;                // root of list of process in target cluster
1368    xptr_t        lock_xp;             // extended pointer on lock protecting  this list
[16]1369
[580]1370#if DEBUG_THREAD_GET_XPTR
1371uint32_t cycle  = (uint32_t)hal_get_cycles();
1372thread_t * this = CURRENT_THREAD;
1373if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1374printk("\n[%s] thread %x in process %x enters / pid %x / trdid %x / cycle %d\n",
[580]1375__FUNCTION__, this->trdid, this->process->pid, pid, trdid, cycle );
1376#endif
1377
[23]1378    // get target cluster identifier and local thread identifier
1379    target_cxy         = CXY_FROM_TRDID( trdid );
1380    target_thread_ltid = LTID_FROM_TRDID( trdid );
1381
[436]1382    // check trdid argument
[564]1383        if( (target_thread_ltid >= CONFIG_THREADS_MAX_PER_CLUSTER) || 
[637]1384        cluster_is_active( target_cxy ) == false )                return XPTR_NULL;
[436]1385
[23]1386    // get root of list of process descriptors in target cluster
1387    hal_remote_memcpy( XPTR( local_cxy  , &root ),
1388                       XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ),
1389                       sizeof(xlist_entry_t) );
1390
[564]1391    // get extended pointer on lock protecting the list of local processes
[23]1392    lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock );
1393
1394    // take the lock protecting the list of processes in target cluster
[564]1395    remote_queuelock_acquire( lock_xp );
[23]1396
[580]1397#if( DEBUG_THREAD_GET_XPTR & 1 )
1398if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1399printk("\n[%s] scan processes in cluster %x :\n", __FUNCTION__, target_cxy );
[580]1400#endif
1401
[564]1402    // scan the list of local processes in target cluster
[23]1403    xptr_t  iter;
1404    bool_t  found = false;
1405    XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter )
1406    {
1407        target_process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
[469]1408        target_process_ptr = GET_PTR( target_process_xp );
[564]1409        target_process_pid = hal_remote_l32( XPTR( target_cxy , &target_process_ptr->pid ) );
[580]1410
1411#if( DEBUG_THREAD_GET_XPTR & 1 )
1412if( DEBUG_THREAD_GET_XPTR < cycle )
1413printk(" - process %x\n", target_process_pid );
1414#endif
1415
[23]1416        if( target_process_pid == pid )
1417        {
1418            found = true;
1419            break;
1420        }
1421    }
1422
1423    // release the lock protecting the list of processes in target cluster
[564]1424    remote_queuelock_release( lock_xp );
[23]1425
[436]1426    // check PID found
[580]1427    if( found == false ) 
1428    {
[23]1429
[580]1430#if( DEBUG_THREAD_GET_XPTR & 1 )
1431if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1432printk("\n[%s] pid %x not found in cluster %x\n",
[580]1433__FUNCTION__, pid, target_cxy );
1434#endif
1435        return XPTR_NULL;
1436    }
1437
[23]1438    // get target thread local pointer
1439    xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] );
[171]1440    target_thread_ptr = (thread_t *)hal_remote_lpt( xp );
[23]1441
[580]1442    if( target_thread_ptr == NULL )
1443    {
[23]1444
[580]1445#if( DEBUG_THREAD_GET_XPTR & 1 )
1446if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1447printk("\n[%s] thread %x not registered in process %x in cluster %x\n",
[580]1448__FUNCTION__, trdid, pid, target_cxy );
1449#endif
1450        return XPTR_NULL;
1451    }
1452
1453#if DEBUG_THREAD_GET_XPTR
1454cycle  = (uint32_t)hal_get_cycles();
1455if( DEBUG_THREAD_GET_XPTR < cycle )
[593]1456printk("\n[%s] thread %x in process %x exit / pid %x / trdid %x / cycle %d\n",
[580]1457__FUNCTION__, this->trdid, this->process->pid, pid, trdid, cycle );
1458#endif
1459
[23]1460    return XPTR( target_cxy , target_thread_ptr );
[564]1461
1462}  // end thread_get_xptr()
1463
1464///////////////////////////////////////////////////
1465void thread_assert_can_yield( thread_t    * thread,
1466                              const char  * func_str )
1467{
1468    // does nothing if thread does not hold any busylock
1469
1470    if( thread->busylocks )
1471    {
1472        // get pointers on TXT0 chdev
1473        xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
1474        cxy_t     txt0_cxy = GET_CXY( txt0_xp );
1475        chdev_t * txt0_ptr = GET_PTR( txt0_xp );
1476
1477        // get extended pointer on TXT0 lock
1478        xptr_t  txt0_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
1479
1480        // get TXT0 lock
1481        remote_busylock_acquire( txt0_lock_xp );
1482
1483        // display error message on TXT0
[593]1484        nolock_printk("\n[PANIC] in %s / thread[%x,%x] cannot yield : "
[580]1485        "hold %d busylock(s) / cycle %d\n",
[593]1486        func_str, thread->process->pid, thread->trdid,
[624]1487        thread->busylocks - 1, (uint32_t)hal_get_cycles() );
[564]1488
1489#if DEBUG_BUSYLOCK
[580]1490
[583]1491// scan list of busylocks
1492xptr_t    iter_xp;
[580]1493xptr_t    root_xp  = XPTR( local_cxy , &thread->busylocks_root );
1494XLIST_FOREACH( root_xp , iter_xp )
[564]1495{
[580]1496    xptr_t       lock_xp   = XLIST_ELEMENT( iter_xp , busylock_t , xlist );
1497    cxy_t        lock_cxy  = GET_CXY( lock_xp );
1498    busylock_t * lock_ptr  = GET_PTR( lock_xp );
1499    uint32_t     lock_type = hal_remote_l32( XPTR( lock_cxy , &lock_ptr->type ) );
1500    nolock_printk(" - %s in cluster %x\n", lock_type_str[lock_type] , lock_cxy );
1501}
[564]1502
1503#endif
[23]1504
[564]1505        // release TXT0 lock
1506        remote_busylock_release( txt0_lock_xp );
1507
1508        // suicide
1509        hal_core_sleep();
1510    }
1511}  // end thread_assert_can yield()
1512
[619]1513//////////////////////////////////////////////////////
1514void thread_display_busylocks( xptr_t       thread_xp,
1515                               const char * string )
[564]1516{
[623]1517
[581]1518    cxy_t      thread_cxy = GET_CXY( thread_xp );
1519    thread_t * thread_ptr = GET_PTR( thread_xp );
[564]1520
[623]1521#if DEBUG_BUSYLOCK
[564]1522
[623]1523    xptr_t     iter_xp;
[564]1524
[623]1525    // get relevant info from target thread descriptor
[619]1526    uint32_t    locks   = hal_remote_l32( XPTR( thread_cxy , &thread_ptr->busylocks ) );
1527    trdid_t     trdid   = hal_remote_l32( XPTR( thread_cxy , &thread_ptr->trdid ) );
1528    process_t * process = hal_remote_lpt( XPTR( thread_cxy , &thread_ptr->process ) );
1529    pid_t       pid     = hal_remote_l32( XPTR( thread_cxy , &process->pid ) );
[564]1530
[581]1531    // get extended pointer on root of busylocks
[619]1532    xptr_t root_xp = XPTR( thread_cxy , &thread_ptr->busylocks_root );
[564]1533
[581]1534    // get pointers on TXT0 chdev
1535    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
1536    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
1537    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
[580]1538
[581]1539    // get extended pointer on remote TXT0 lock
1540    xptr_t  txt0_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
[580]1541
[581]1542    // get TXT0 lock
1543    remote_busylock_acquire( txt0_lock_xp );
[580]1544
[581]1545    // display header
[619]1546    nolock_printk("\n***** thread[%x,%x] in <%s> : %d busylocks *****\n",
1547    pid, trdid, string, locks );
[581]1548
1549    // scan the xlist of busylocks when required
1550    if( locks )
1551    {
1552        XLIST_FOREACH( root_xp , iter_xp )
[580]1553        {
[581]1554            xptr_t       lock_xp   = XLIST_ELEMENT( iter_xp , busylock_t , xlist );
1555            cxy_t        lock_cxy  = GET_CXY( lock_xp );
1556            busylock_t * lock_ptr  = GET_PTR( lock_xp );
1557            uint32_t     lock_type = hal_remote_l32(XPTR( lock_cxy , &lock_ptr->type ));
1558            nolock_printk(" - %s in cluster %x\n", lock_type_str[lock_type] , lock_cxy );
[580]1559        }
[581]1560    }
[580]1561
[581]1562    // release TXT0 lock
1563    remote_busylock_release( txt0_lock_xp );
1564
[623]1565#else
[581]1566
[623]1567printk("\n[ERROR] in %s : set DEBUG_BUSYLOCK in kernel_config.h for %s / thread(%x,%x)\n",
1568__FUNCTION__, string, thread_cxy, thread_ptr );
1569
[581]1570#endif
1571
[623]1572    return;
[581]1573
[580]1574}  // end thread_display_busylock()
[581]1575
Note: See TracBrowser for help on using the repository browser.