[1] | 1 | /* |
---|
| 2 | * grdxt.c - Three-levels Generic Radix-tree implementation |
---|
| 3 | * |
---|
| 4 | * authors Alain Greiner (2016) |
---|
| 5 | * |
---|
| 6 | * Copyright (c) UPMC Sorbonne Universites |
---|
| 7 | * |
---|
| 8 | * This file is part of ALMOS-MKH. |
---|
| 9 | * |
---|
| 10 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
| 11 | * under the terms of the GNU General Public License as published by |
---|
| 12 | * the Free Software Foundation; version 2.0 of the License. |
---|
| 13 | * |
---|
| 14 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 17 | * General Public License for more details. |
---|
| 18 | * |
---|
| 19 | * You should have received a copy of the GNU General Public License |
---|
| 20 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
| 21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 22 | */ |
---|
| 23 | |
---|
[457] | 24 | #include <hal_kernel_types.h> |
---|
[1] | 25 | #include <hal_special.h> |
---|
[603] | 26 | #include <hal_remote.h> |
---|
[1] | 27 | #include <errno.h> |
---|
| 28 | #include <printk.h> |
---|
| 29 | #include <kmem.h> |
---|
| 30 | #include <grdxt.h> |
---|
| 31 | |
---|
| 32 | ///////////////////////////////// |
---|
| 33 | error_t grdxt_init( grdxt_t * rt, |
---|
| 34 | uint32_t ix1_width, |
---|
| 35 | uint32_t ix2_width, |
---|
| 36 | uint32_t ix3_width ) |
---|
| 37 | { |
---|
| 38 | void ** root; |
---|
| 39 | kmem_req_t req; |
---|
| 40 | |
---|
| 41 | rt->ix1_width = ix1_width; |
---|
| 42 | rt->ix2_width = ix2_width; |
---|
| 43 | rt->ix3_width = ix3_width; |
---|
| 44 | |
---|
| 45 | // allocates first level array |
---|
| 46 | req.type = KMEM_GENERIC; |
---|
| 47 | req.size = sizeof(void *) << ix1_width; |
---|
| 48 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 49 | root = kmem_alloc( &req ); |
---|
| 50 | if( root == NULL ) return ENOMEM; |
---|
| 51 | |
---|
| 52 | rt->root = root; |
---|
| 53 | |
---|
| 54 | return 0; |
---|
| 55 | |
---|
[603] | 56 | } // end grdxt_init() |
---|
| 57 | |
---|
[1] | 58 | ////////////////////////////////// |
---|
| 59 | void grdxt_destroy( grdxt_t * rt ) |
---|
| 60 | { |
---|
| 61 | kmem_req_t req; |
---|
| 62 | |
---|
| 63 | uint32_t w1 = rt->ix1_width; |
---|
| 64 | uint32_t w2 = rt->ix2_width; |
---|
| 65 | uint32_t w3 = rt->ix3_width; |
---|
| 66 | |
---|
| 67 | void ** ptr1 = rt->root; |
---|
| 68 | void ** ptr2; |
---|
| 69 | void ** ptr3; |
---|
| 70 | |
---|
| 71 | uint32_t ix1; |
---|
| 72 | uint32_t ix2; |
---|
| 73 | |
---|
[603] | 74 | // check rt |
---|
| 75 | assert( (rt != NULL) , "pointer on radix tree is NULL\n" ); |
---|
| 76 | |
---|
[1] | 77 | req.type = KMEM_GENERIC; |
---|
| 78 | |
---|
[473] | 79 | for( ix1=0 ; ix1 < (uint32_t)(1 << w1) ; ix1++ ) |
---|
[1] | 80 | { |
---|
| 81 | ptr2 = ptr1[ix1]; |
---|
| 82 | |
---|
| 83 | if( ptr2 == NULL ) continue; |
---|
| 84 | |
---|
[473] | 85 | for( ix2=0 ; ix2 < (uint32_t)(1 << w2) ; ix2++ ) |
---|
[1] | 86 | { |
---|
| 87 | ptr3 = ptr2[ix2]; |
---|
| 88 | |
---|
| 89 | if( ptr3 == NULL ) continue; |
---|
| 90 | |
---|
| 91 | // release level 3 array |
---|
| 92 | req.ptr = ptr3; |
---|
| 93 | req.type = KMEM_GENERIC; |
---|
| 94 | req.size = sizeof(void *) * (1 << w3); |
---|
| 95 | kmem_free( &req ); |
---|
| 96 | } |
---|
| 97 | |
---|
| 98 | // release level 2 array |
---|
| 99 | req.ptr = ptr2; |
---|
| 100 | req.type = KMEM_GENERIC; |
---|
| 101 | req.size = sizeof(void *) * (1 << w2); |
---|
| 102 | kmem_free( &req ); |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | // release level 1 array |
---|
| 106 | req.ptr = ptr1; |
---|
| 107 | req.type = KMEM_GENERIC; |
---|
| 108 | req.size = sizeof(void *) * (1 << w1); |
---|
| 109 | kmem_free( &req ); |
---|
| 110 | |
---|
| 111 | } // end grdxt_destroy() |
---|
| 112 | |
---|
[603] | 113 | //////////////////////////////////// |
---|
| 114 | void grdxt_display( xptr_t rt_xp, |
---|
| 115 | char * name ) |
---|
[1] | 116 | { |
---|
[603] | 117 | uint32_t ix1; |
---|
| 118 | uint32_t ix2; |
---|
| 119 | uint32_t ix3; |
---|
[1] | 120 | |
---|
[603] | 121 | // check rt_xp |
---|
| 122 | assert( (rt_xp != XPTR_NULL) , "pointer on radix tree is NULL\n" ); |
---|
[1] | 123 | |
---|
[603] | 124 | // get cluster and local pointer on remote rt descriptor |
---|
| 125 | grdxt_t * rt_ptr = GET_PTR( rt_xp ); |
---|
| 126 | cxy_t rt_cxy = GET_CXY( rt_xp ); |
---|
[1] | 127 | |
---|
[603] | 128 | // get widths |
---|
| 129 | uint32_t w1 = hal_remote_l32( XPTR( rt_cxy , &rt_ptr->ix1_width ) ); |
---|
| 130 | uint32_t w2 = hal_remote_l32( XPTR( rt_cxy , &rt_ptr->ix2_width ) ); |
---|
| 131 | uint32_t w3 = hal_remote_l32( XPTR( rt_cxy , &rt_ptr->ix3_width ) ); |
---|
[1] | 132 | |
---|
[603] | 133 | void ** ptr1 = hal_remote_lpt( XPTR( rt_cxy , &rt_ptr->root ) ); |
---|
[1] | 134 | |
---|
[610] | 135 | printk("\n***** Generic Radix Tree for <%s>\n", name ); |
---|
[603] | 136 | |
---|
[473] | 137 | for( ix1=0 ; ix1 < (uint32_t)(1<<w1) ; ix1++ ) |
---|
[1] | 138 | { |
---|
[603] | 139 | void ** ptr2 = hal_remote_lpt( XPTR( rt_cxy , &ptr1[ix1] ) ); |
---|
[1] | 140 | if( ptr2 == NULL ) continue; |
---|
| 141 | |
---|
[473] | 142 | for( ix2=0 ; ix2 < (uint32_t)(1<<w2) ; ix2++ ) |
---|
[1] | 143 | { |
---|
[603] | 144 | void ** ptr3 = hal_remote_lpt( XPTR( rt_cxy , &ptr2[ix2] ) ); |
---|
[1] | 145 | if( ptr3 == NULL ) continue; |
---|
| 146 | |
---|
[473] | 147 | for( ix3=0 ; ix3 < (uint32_t)(1<<w3) ; ix3++ ) |
---|
[1] | 148 | { |
---|
[603] | 149 | void * value = hal_remote_lpt( XPTR( rt_cxy , &ptr3[ix3] ) ); |
---|
| 150 | if( value == NULL ) continue; |
---|
[1] | 151 | |
---|
[603] | 152 | uint32_t key = (ix1<<(w2+w3)) + (ix2<<w3) + ix3; |
---|
| 153 | printk(" - key = %x / value = %x\n", key , (intptr_t)value ); |
---|
[1] | 154 | } |
---|
| 155 | } |
---|
| 156 | } |
---|
| 157 | |
---|
[603] | 158 | } // end grdxt_display() |
---|
| 159 | |
---|
[1] | 160 | //////////////////////////////////// |
---|
| 161 | error_t grdxt_insert( grdxt_t * rt, |
---|
| 162 | uint32_t key, |
---|
| 163 | void * value ) |
---|
| 164 | { |
---|
| 165 | kmem_req_t req; |
---|
| 166 | |
---|
| 167 | uint32_t w1 = rt->ix1_width; |
---|
| 168 | uint32_t w2 = rt->ix2_width; |
---|
| 169 | uint32_t w3 = rt->ix3_width; |
---|
| 170 | |
---|
[603] | 171 | // Check key value |
---|
| 172 | assert( ((key >> (w1 + w2 + w3)) == 0 ), "illegal key value %x\n", key ); |
---|
[1] | 173 | |
---|
| 174 | // compute indexes |
---|
| 175 | uint32_t ix1 = key >> (w2 + w3); // index in level 1 array |
---|
| 176 | uint32_t ix2 = (key >> w3) & ((1 << w2) -1); // index in level 2 array |
---|
| 177 | uint32_t ix3 = key & ((1 << w3) - 1); // index in level 3 array |
---|
| 178 | |
---|
| 179 | void ** ptr1 = rt->root; // pointer on level 1 array |
---|
| 180 | void ** ptr2; // pointer on level 2 array |
---|
| 181 | void ** ptr3; // pointer on level 3 array |
---|
| 182 | |
---|
| 183 | // If required, we must allocate memory for the selected level 2 array, |
---|
[603] | 184 | // and update the level 1 array. |
---|
[1] | 185 | if( ptr1[ix1] == NULL ) |
---|
| 186 | { |
---|
| 187 | // allocate memory for level 2 array |
---|
| 188 | req.type = KMEM_GENERIC; |
---|
| 189 | req.size = sizeof(void *) << w2; |
---|
| 190 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 191 | ptr2 = kmem_alloc( &req ); |
---|
| 192 | if( ptr2 == NULL) return ENOMEM; |
---|
| 193 | |
---|
| 194 | // update level 1 array |
---|
| 195 | ptr1[ix1] = ptr2; |
---|
| 196 | } |
---|
| 197 | else // get pointer on selected level 2 array. |
---|
| 198 | { |
---|
| 199 | ptr2 = ptr1[ix1]; |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | // If required, we must allocate memory for the selected level 3 array, |
---|
[603] | 203 | // and update the level 2 array. |
---|
[1] | 204 | if( ptr2[ix2] == NULL ) |
---|
| 205 | { |
---|
| 206 | // allocate memory for level 3 array |
---|
| 207 | req.type = KMEM_GENERIC; |
---|
| 208 | req.size = sizeof(void *) << w3; |
---|
| 209 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 210 | ptr3 = kmem_alloc( &req ); |
---|
| 211 | if( ptr3 == NULL) return ENOMEM; |
---|
| 212 | |
---|
| 213 | // update level 3 array |
---|
| 214 | ptr2[ix2] = ptr3; |
---|
| 215 | } |
---|
| 216 | else // get pointer on selected level 3 array. |
---|
| 217 | { |
---|
| 218 | ptr3 = ptr2[ix2]; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | // selected slot in level 3 array must be empty |
---|
| 222 | if( ptr3[ix3] != NULL ) return EEXIST; |
---|
| 223 | |
---|
| 224 | // register the value |
---|
| 225 | ptr3[ix3] = value; |
---|
[124] | 226 | hal_fence(); |
---|
[1] | 227 | |
---|
| 228 | return 0; |
---|
| 229 | |
---|
[603] | 230 | } // end grdxt_insert() |
---|
| 231 | |
---|
[1] | 232 | /////////////////////////////////// |
---|
| 233 | void * grdxt_remove( grdxt_t * rt, |
---|
| 234 | uint32_t key ) |
---|
| 235 | { |
---|
| 236 | uint32_t w1 = rt->ix1_width; |
---|
| 237 | uint32_t w2 = rt->ix2_width; |
---|
| 238 | uint32_t w3 = rt->ix3_width; |
---|
| 239 | |
---|
[603] | 240 | // Check key value |
---|
| 241 | assert( ((key >> (w1 + w2 + w3)) == 0 ), "illegal key value %x\n", key ); |
---|
[1] | 242 | |
---|
| 243 | // compute indexes |
---|
| 244 | uint32_t ix1 = key >> (w2 + w3); // index in level 1 array |
---|
| 245 | uint32_t ix2 = (key >> w3) & ((1 << w2) -1); // index in level 2 array |
---|
| 246 | uint32_t ix3 = key & ((1 << w3) - 1); // index in level 3 array |
---|
| 247 | |
---|
| 248 | void ** ptr1 = rt->root; // pointer on level 1 array |
---|
| 249 | void ** ptr2; // pointer on level 2 array |
---|
| 250 | void ** ptr3; // pointer on level 3 array |
---|
| 251 | |
---|
| 252 | // get ptr2 |
---|
| 253 | ptr2 = ptr1[ix1]; |
---|
| 254 | if( ptr2 == NULL ) return NULL; |
---|
| 255 | |
---|
| 256 | // get ptr3 |
---|
| 257 | ptr3 = ptr2[ix2]; |
---|
| 258 | if( ptr3 == NULL ) return NULL; |
---|
| 259 | |
---|
| 260 | // get value |
---|
| 261 | void * value = ptr3[ix3]; |
---|
| 262 | |
---|
| 263 | // reset selected slot |
---|
| 264 | ptr3[ix3] = NULL; |
---|
[124] | 265 | hal_fence(); |
---|
[1] | 266 | |
---|
| 267 | return value; |
---|
| 268 | |
---|
[603] | 269 | } // end grdxt_remove() |
---|
| 270 | |
---|
[1] | 271 | /////////////////////////////////// |
---|
| 272 | void * grdxt_lookup( grdxt_t * rt, |
---|
| 273 | uint32_t key ) |
---|
| 274 | { |
---|
| 275 | uint32_t w1 = rt->ix1_width; |
---|
| 276 | uint32_t w2 = rt->ix2_width; |
---|
| 277 | uint32_t w3 = rt->ix3_width; |
---|
| 278 | |
---|
[603] | 279 | // Check key value |
---|
| 280 | assert( ((key >> (w1 + w2 + w3)) == 0 ), "illegal key value %x\n", key ); |
---|
[1] | 281 | |
---|
| 282 | void ** ptr1 = rt->root; |
---|
| 283 | void ** ptr2; |
---|
| 284 | void ** ptr3; |
---|
| 285 | |
---|
| 286 | // compute indexes |
---|
| 287 | uint32_t ix1 = key >> (w2 + w3); // index in level 1 array |
---|
| 288 | uint32_t ix2 = (key >> w3) & ((1 << w2) -1); // index in level 2 array |
---|
| 289 | uint32_t ix3 = key & ((1 << w3) - 1); // index in level 3 array |
---|
| 290 | |
---|
| 291 | // get ptr2 |
---|
| 292 | ptr2 = ptr1[ix1]; |
---|
| 293 | if( ptr2 == NULL ) return NULL; |
---|
| 294 | |
---|
| 295 | // get ptr3 |
---|
| 296 | ptr3 = ptr2[ix2]; |
---|
| 297 | if( ptr3 == NULL ) return NULL; |
---|
| 298 | |
---|
| 299 | // get value |
---|
| 300 | void * value = ptr3[ix3]; |
---|
| 301 | |
---|
| 302 | return value; |
---|
| 303 | |
---|
[603] | 304 | } // end grdxt_lookup() |
---|
| 305 | |
---|
| 306 | //////////////////////////////////////////// |
---|
| 307 | xptr_t grdxt_remote_lookup( xptr_t rt_xp, |
---|
| 308 | uint32_t key ) |
---|
| 309 | { |
---|
| 310 | // get cluster and local pointer on remote rt descriptor |
---|
| 311 | grdxt_t * rt_ptr = GET_PTR( rt_xp ); |
---|
| 312 | cxy_t rt_cxy = GET_CXY( rt_xp ); |
---|
| 313 | |
---|
| 314 | // get widths |
---|
| 315 | uint32_t w1 = hal_remote_l32( XPTR( rt_cxy , &rt_ptr->ix1_width ) ); |
---|
| 316 | uint32_t w2 = hal_remote_l32( XPTR( rt_cxy , &rt_ptr->ix2_width ) ); |
---|
| 317 | uint32_t w3 = hal_remote_l32( XPTR( rt_cxy , &rt_ptr->ix3_width ) ); |
---|
| 318 | |
---|
| 319 | // Check key value |
---|
| 320 | assert( ((key >> (w1 + w2 + w3)) == 0 ), "illegal key value %x\n", key ); |
---|
| 321 | |
---|
| 322 | // compute indexes |
---|
| 323 | uint32_t ix1 = key >> (w2 + w3); // index in level 1 array |
---|
| 324 | uint32_t ix2 = (key >> w3) & ((1 << w2) -1); // index in level 2 array |
---|
| 325 | uint32_t ix3 = key & ((1 << w3) - 1); // index in level 3 array |
---|
| 326 | |
---|
| 327 | // get ptr1 |
---|
[610] | 328 | void ** ptr1 = hal_remote_lpt( XPTR( rt_cxy , &rt_ptr->root ) ); |
---|
[603] | 329 | |
---|
| 330 | // get ptr2 |
---|
[610] | 331 | void ** ptr2 = hal_remote_lpt( XPTR( rt_cxy , &ptr1[ix1] ) ); |
---|
[603] | 332 | if( ptr2 == NULL ) return XPTR_NULL; |
---|
| 333 | |
---|
| 334 | // get ptr3 |
---|
[610] | 335 | void ** ptr3 = hal_remote_lpt( XPTR( rt_cxy , &ptr2[ix2] ) ); |
---|
[603] | 336 | if( ptr3 == NULL ) return XPTR_NULL; |
---|
| 337 | |
---|
[610] | 338 | // get pointer on registered item |
---|
| 339 | void * item_ptr = hal_remote_lpt( XPTR( rt_cxy , &ptr3[ix3] ) ); |
---|
[603] | 340 | |
---|
[610] | 341 | // return extended pointer on registered item |
---|
| 342 | if ( item_ptr == NULL ) return XPTR_NULL; |
---|
| 343 | else return XPTR( rt_cxy , item_ptr ); |
---|
[603] | 344 | |
---|
| 345 | } // end grdxt_remote_lookup() |
---|
| 346 | |
---|
[1] | 347 | ////////////////////////////////////// |
---|
| 348 | void * grdxt_get_first( grdxt_t * rt, |
---|
| 349 | uint32_t start_key, |
---|
| 350 | uint32_t * found_key ) |
---|
| 351 | { |
---|
| 352 | uint32_t ix1; |
---|
| 353 | uint32_t ix2; |
---|
| 354 | uint32_t ix3; |
---|
| 355 | |
---|
| 356 | uint32_t w1 = rt->ix1_width; |
---|
| 357 | uint32_t w2 = rt->ix2_width; |
---|
| 358 | uint32_t w3 = rt->ix3_width; |
---|
| 359 | |
---|
[603] | 360 | // Check key value |
---|
| 361 | assert( ((start_key >> (w1 + w2 + w3)) == 0 ), "illegal key value %x\n", start_key ); |
---|
[1] | 362 | |
---|
| 363 | // compute max indexes |
---|
| 364 | uint32_t max1 = 1 << w1; |
---|
| 365 | uint32_t max2 = 1 << w2; |
---|
| 366 | uint32_t max3 = 1 << w3; |
---|
| 367 | |
---|
| 368 | // compute min indexes |
---|
| 369 | uint32_t min1 = start_key >> (w2 + w3); |
---|
| 370 | uint32_t min2 = (start_key >> w3) & ((1 << w2) -1); |
---|
| 371 | uint32_t min3 = start_key & ((1 << w3) - 1); |
---|
| 372 | |
---|
| 373 | void ** ptr1 = rt->root; |
---|
| 374 | void ** ptr2; |
---|
| 375 | void ** ptr3; |
---|
| 376 | |
---|
| 377 | for( ix1 = min1 ; ix1 < max1 ; ix1++ ) |
---|
| 378 | { |
---|
| 379 | ptr2 = ptr1[ix1]; |
---|
| 380 | if( ptr2 == NULL ) continue; |
---|
| 381 | |
---|
| 382 | for( ix2 = min2 ; ix2 < max2 ; ix2++ ) |
---|
| 383 | { |
---|
| 384 | ptr3 = ptr2[ix2]; |
---|
| 385 | if( ptr3 == NULL ) continue; |
---|
| 386 | |
---|
| 387 | for( ix3 = min3 ; ix3 < max3 ; ix3++ ) |
---|
| 388 | { |
---|
| 389 | if( ptr3[ix3] == NULL ) continue; |
---|
| 390 | else |
---|
| 391 | { |
---|
| 392 | *found_key = (ix1 << (w2+w3)) | (ix2 << w1) | ix3; |
---|
| 393 | return ptr3[ix3]; |
---|
| 394 | } |
---|
| 395 | } |
---|
| 396 | } |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | return NULL; |
---|
[603] | 400 | |
---|
| 401 | } // end grdxt_get_first() |
---|