source: trunk/kernel/mm/vmm.c @ 675

Last change on this file since 675 was 672, checked in by alain, 4 years ago

1) Introduce up to 4 command lines arguments in the KSH "load" command.
These arguments are transfered to the user process through the
argc/argv mechanism, using the user space "args" vseg.

2) Introduce the named and anonymous "pipes", for inter-process communication
through the pipe() and mkfifo() syscalls.

3) Introduce the "chat" application to validate the two above mechanisms.

4) Improve printk() and assert() fonctions in printk.c.

File size: 101.7 KB
Line 
1/*
2 * vmm.c - virtual memory manager related operations definition.
3 *
4 * Authors   Ghassan Almaless (2008,2009,2010,2011,2012)
5 *           Alain Greiner    (2016,2017,2018,2019,2020)
6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25#include <kernel_config.h>
26#include <hal_kernel_types.h>
27#include <hal_special.h>
28#include <hal_gpt.h>
29#include <hal_vmm.h>
30#include <hal_irqmask.h>
31#include <hal_macros.h>
32#include <printk.h>
33#include <memcpy.h>
34#include <remote_queuelock.h>
35#include <list.h>
36#include <xlist.h>
37#include <bits.h>
38#include <process.h>
39#include <thread.h>
40#include <vseg.h>
41#include <cluster.h>
42#include <scheduler.h>
43#include <vfs.h>
44#include <mapper.h>
45#include <page.h>
46#include <kmem.h>
47#include <vmm.h>
48#include <hal_exception.h>
49
50////////////////////////////////////////////////////////////////////////////////////////////
51//   Extern global variables
52////////////////////////////////////////////////////////////////////////////////////////////
53
54extern  process_t  process_zero;      // allocated in cluster.c
55
56////////////////////////////////////////////////////////////////////////////////////////////
57// This static function is called by the vmm_user_init() function.
58// It initialises the free lists of vsegs used by the VMM MMAP allocator.
59// It makes the assumption that HEAP_BASE == 1 Gbytes and HEAP_SIZE == 2 Gbytes.
60////////////////////////////////////////////////////////////////////////////////////////////
61static void vmm_stack_init( vmm_t * vmm )
62{
63
64// check STACK zone
65assert( __FUNCTION__, ((CONFIG_VMM_STACK_SIZE * CONFIG_THREADS_MAX_PER_CLUSTER) <=
66(CONFIG_VMM_VSPACE_SIZE - CONFIG_VMM_STACK_BASE)) , "STACK zone too small\n");
67
68    // get pointer on STACK allocator
69    stack_mgr_t * mgr = &vmm->stack_mgr;
70
71    mgr->bitmap   = 0;
72    mgr->vpn_base = CONFIG_VMM_STACK_BASE;
73    busylock_init( &mgr->lock , LOCK_VMM_STACK );
74
75}
76
77////////////////////////////////////////////////////////////////////////////////////////////
78// This static function is called by the vmm_create_vseg() function, and implements
79// the VMM STACK specific allocator. Depending on the local thread index <ltid>,
80// it ckeks availability of the corresponding slot in the process STACKS region,
81// allocates a vseg descriptor, and initializes the "vpn_base" and "vpn_size" fields.
82////////////////////////////////////////////////////////////////////////////////////////////
83// @ vmm      : [in]  pointer on VMM.
84// @ ltid     : [in]  requested slot == local user thread identifier.
85////////////////////////////////////////////////////////////////////////////////////////////
86static vseg_t * vmm_stack_alloc( vmm_t  * vmm,
87                                 ltid_t   ltid )
88{
89
90// check ltid argument
91assert( __FUNCTION__, (ltid <= ((CONFIG_VMM_VSPACE_SIZE - CONFIG_VMM_STACK_BASE) / CONFIG_VMM_STACK_SIZE)),
92"slot index %d too large for an user stack vseg", ltid );
93
94    // get stack allocator pointer
95    stack_mgr_t * mgr = &vmm->stack_mgr;
96
97    // get lock protecting stack allocator
98    busylock_acquire( &mgr->lock );
99
100// check requested slot is available
101assert( __FUNCTION__, (bitmap_state( &mgr->bitmap , ltid ) == false),
102"slot index %d already allocated", ltid );
103
104    // allocate a vseg descriptor
105    vseg_t * vseg = vseg_alloc();
106
107    if( vseg == NULL )
108        {
109        // release lock protecting free lists
110        busylock_release( &mgr->lock );
111
112        printk("\n[ERROR] %s cannot allocate memory for vseg in cluster %x\n",
113        __FUNCTION__ , local_cxy );
114
115        return NULL;
116    }
117
118    // update bitmap
119    bitmap_set( &mgr->bitmap , ltid );
120
121    // release lock on stack allocator
122    busylock_release( &mgr->lock );
123
124    // set "vpn_base" & "vpn_size" fields (first page non allocated)
125    vseg->vpn_base = mgr->vpn_base + (ltid * CONFIG_VMM_STACK_SIZE) + 1;
126    vseg->vpn_size = CONFIG_VMM_STACK_SIZE - 1;
127
128    return vseg;
129
130} // end vmm_stack_alloc()
131
132////////////////////////////////////////////////////////////////////////////////////////////
133// This static function is called by the vmm_remove_vseg() function, and implements
134// the VMM STACK specific desallocator.
135// It updates the bitmap to release the corresponding slot in the process STACKS region,
136// and releases memory allocated to vseg descriptor.
137////////////////////////////////////////////////////////////////////////////////////////////
138// @ vmm      : [in] pointer on VMM.
139// @ vseg     : [in] pointer on released vseg.
140////////////////////////////////////////////////////////////////////////////////////////////
141static void vmm_stack_free( vmm_t  * vmm,
142                            vseg_t * vseg )
143{
144    // get stack allocator pointer
145    stack_mgr_t * mgr = &vmm->stack_mgr;
146
147    // compute slot index
148    uint32_t index = (vseg->vpn_base - 1 - mgr->vpn_base) / CONFIG_VMM_STACK_SIZE;
149
150// check index
151assert( __FUNCTION__, (index <= ((CONFIG_VMM_VSPACE_SIZE - CONFIG_VMM_STACK_BASE) / CONFIG_VMM_STACK_SIZE)),
152"slot index %d too large for an user stack vseg", index );
153
154// check released slot is allocated
155assert( __FUNCTION__, (bitmap_state( &mgr->bitmap , index ) == true),
156"released slot index %d non allocated", index );
157
158    // get lock on stack allocator
159    busylock_acquire( &mgr->lock );
160
161    // update stacks_bitmap
162    bitmap_clear( &mgr->bitmap , index );
163
164    // release lock on stack allocator
165    busylock_release( &mgr->lock );
166
167    // release memory allocated to vseg descriptor
168    vseg_free( vseg );
169
170}  // end vmm_stack_free()
171
172
173
174////////////////////////////////////////////////////////////////////////////////////////////
175// This function display the current state of the VMM MMAP allocator of a process VMM
176// identified by the <vmm> argument.
177////////////////////////////////////////////////////////////////////////////////////////////
178void vmm_mmap_display( vmm_t * vmm )
179{
180    uint32_t  order;
181    xptr_t    root_xp;
182    xptr_t    iter_xp;
183
184    // get pointer on process
185    process_t * process = (process_t *)(((char*)vmm) - OFFSETOF( process_t , vmm ));
186
187    // get process PID
188    pid_t pid = process->pid;
189
190    // get pointer on VMM MMAP allocator
191    mmap_mgr_t * mgr = &vmm->mmap_mgr;
192
193    // display header
194    printk("***** VMM MMAP allocator / process %x *****\n", pid );
195
196    // scan the array of free lists of vsegs
197    for( order = 0 ; order <= CONFIG_VMM_HEAP_MAX_ORDER ; order++ )
198    {
199        root_xp = XPTR( local_cxy , &mgr->free_list_root[order] );
200
201        if( !xlist_is_empty( root_xp ) )
202        {
203            printk(" - %d (%x pages) : ", order , 1<<order );
204
205            XLIST_FOREACH( root_xp , iter_xp )
206            {
207                xptr_t   vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
208                vseg_t * vseg    = GET_PTR( vseg_xp );
209
210                printk("%x | ", vseg->vpn_base );
211            }
212
213            printk("\n");
214        }
215    }
216}  // end vmm_mmap_display()
217
218////////////////////////////////////////////////////////////////////////////////////////////
219// This static function is called by the vmm_user_init() function.
220// It initialises the free lists of vsegs used by the VMM MMAP allocator.
221// TODO this function is only valid for 32 bits cores, and makes three assumptions:
222// HEAP_BASE == 1 Gbytes / HEAP_SIZE == 2 Gbytes / MMAP_MAX_SIZE == 1 Gbytes
223////////////////////////////////////////////////////////////////////////////////////////////
224void vmm_mmap_init( vmm_t * vmm )
225{
226
227// check HEAP base and size
228assert( __FUNCTION__, (CONFIG_VMM_HEAP_BASE == 0x40000) & (CONFIG_VMM_STACK_BASE == 0xc0000),
229"CONFIG_VMM_HEAP_BASE != 0x40000 or CONFIG_VMM_STACK_BASE != 0xc0000" );
230
231// check  MMAP vseg max order
232assert( __FUNCTION__, (CONFIG_VMM_HEAP_MAX_ORDER == 18), "max mmap vseg size is 256K pages" );
233
234    // get pointer on MMAP allocator
235    mmap_mgr_t * mgr = &vmm->mmap_mgr;
236
237    // initialize HEAP base and size
238    mgr->vpn_base        = CONFIG_VMM_HEAP_BASE;
239    mgr->vpn_size        = CONFIG_VMM_STACK_BASE - CONFIG_VMM_HEAP_BASE;
240
241    // initialize lock
242    busylock_init( &mgr->lock , LOCK_VMM_MMAP );
243
244    // initialize free lists
245    uint32_t   i;
246    for( i = 0 ; i <= CONFIG_VMM_HEAP_MAX_ORDER ; i++ )
247    {
248        xlist_root_init( XPTR( local_cxy , &mgr->free_list_root[i] ) );
249    }
250
251    // allocate and register first 1 Gbytes vseg
252    vseg_t * vseg0 = vseg_alloc();
253
254assert( __FUNCTION__, (vseg0 != NULL) , "cannot allocate vseg" );
255
256    vseg0->vpn_base = CONFIG_VMM_HEAP_BASE;
257    vseg0->vpn_size = CONFIG_VMM_HEAP_BASE;
258
259    xlist_add_first( XPTR( local_cxy , &mgr->free_list_root[CONFIG_VMM_HEAP_MAX_ORDER] ),
260                     XPTR( local_cxy , &vseg0->xlist ) );
261
262    // allocate and register second 1 Gbytes vseg
263    vseg_t * vseg1 = vseg_alloc();
264
265assert( __FUNCTION__, (vseg1 != NULL) , "cannot allocate vseg" );
266
267    vseg1->vpn_base = CONFIG_VMM_HEAP_BASE << 1;
268    vseg1->vpn_size = CONFIG_VMM_HEAP_BASE;
269
270    xlist_add_first( XPTR( local_cxy , &mgr->free_list_root[CONFIG_VMM_HEAP_MAX_ORDER] ),
271                     XPTR( local_cxy , &vseg1->xlist ) );
272
273#if DEBUG_VMM_MMAP
274thread_t * this = CURRENT_THREAD;
275uint32_t cycle = (uint32_t)hal_get_cycles();
276printk("\n[%s] thread[%x,%x] / cycle %d\n",
277__FUNCTION__, this->process->pid, this->trdid, cycle );
278vmm_mmap_display( vmm );
279#endif
280
281}  // end vmm_mmap_init()
282
283////////////////////////////////////////////////////////////////////////////////////////////
284// This static function is called by the vmm_create_vseg() function, and implements
285// the VMM MMAP specific allocator.  Depending on the requested number of pages <npages>,
286// it get a free vseg from the relevant free_list, and initializes the "vpn_base" and
287// "vpn_size" fields.
288////////////////////////////////////////////////////////////////////////////////////////////
289// @ vmm      : [in] pointer on VMM.
290// @ npages   : [in] requested number of pages.
291// @ returns local pointer on vseg if success / returns NULL if failure.
292////////////////////////////////////////////////////////////////////////////////////////////
293static vseg_t * vmm_mmap_alloc( vmm_t * vmm,
294                                vpn_t   npages )
295{
296
297#if DEBUG_VMM_MMAP
298thread_t * this = CURRENT_THREAD;
299uint32_t cycle = (uint32_t)hal_get_cycles();
300if( DEBUG_VMM_MMAP < cycle )
301printk("\n[%s] thread[%x,%x] for %x pages / cycle %d\n",
302__FUNCTION__, this->process->pid, this->trdid, npages, cycle );
303#endif
304
305    // number of allocated pages must be power of 2
306    // compute actual size and order
307    vpn_t    required_vpn_size = POW2_ROUNDUP( npages );
308    uint32_t required_order    = bits_log2( required_vpn_size );
309
310    // get mmap allocator pointer
311    mmap_mgr_t * mgr = &vmm->mmap_mgr;
312
313    // take lock protecting free lists in MMAP allocator
314    busylock_acquire( &mgr->lock );
315
316    // initialises the while loop variables
317    uint32_t   current_order = required_order;
318    vseg_t   * current_vseg  = NULL;
319
320    // search a free vseg equal or larger than requested size
321        while( current_order <= CONFIG_VMM_HEAP_MAX_ORDER )
322        {
323        // build extended pointer on free_pages_root[current_order]
324        xptr_t root_xp = XPTR( local_cxy , &mgr->free_list_root[current_order] );
325
326                if( !xlist_is_empty( root_xp ) )
327                {
328            // get extended pointer on first vseg in this free_list
329                        xptr_t current_vseg_xp = XLIST_FIRST( root_xp , vseg_t , xlist );
330            current_vseg = GET_PTR( current_vseg_xp );
331
332            // build extended pointer on xlist field in vseg descriptor
333            xptr_t list_entry_xp = XPTR( local_cxy , &current_vseg->xlist );
334
335            // remove this vseg from the free_list
336                        xlist_unlink( list_entry_xp );
337
338                        break; 
339                }
340
341        // increment loop index
342        current_order++;
343
344    }  // end while loop
345
346    if( current_vseg == NULL )  // return failure
347    {
348        // release lock protecting free lists
349        busylock_release( &mgr->lock );
350
351        printk("\n[ERROR] %s cannot allocate ) %d page(s) in cluster %x\n",
352        __FUNCTION__, npages , local_cxy );
353
354        return NULL;
355    }
356
357        // split recursively the found vseg in smaller vsegs
358    // if required, and update the free-lists accordingly
359        while( current_order > required_order )
360        {
361        // get found vseg base and size
362        vpn_t  vpn_base = current_vseg->vpn_base;
363        vpn_t  vpn_size = current_vseg->vpn_size;
364       
365        // allocate a new vseg for the upper half of current vseg
366            vseg_t * new_vseg = vseg_alloc();
367
368            if( new_vseg == NULL )
369        {
370                // release lock protecting free lists
371            busylock_release( &mgr->lock );
372
373            printk("\n[ERROR] %s cannot allocate memory for vseg in cluster %x\n",
374            __FUNCTION__ , local_cxy );
375
376            return NULL;
377            }
378
379        // initialise new vseg (upper half of found vseg)
380        new_vseg->vmm      = vmm;
381        new_vseg->vpn_base = vpn_base + (vpn_size >> 1);
382        new_vseg->vpn_size = vpn_size >> 1;
383
384        // insert new vseg in relevant free_list
385                xlist_add_first( XPTR( local_cxy , &mgr->free_list_root[current_order-1] ),
386                         XPTR( local_cxy , &new_vseg->xlist ) );
387
388        // update found vseg
389        current_vseg->vpn_size = vpn_size>>1; 
390
391        // update order
392                current_order --;
393        }
394
395        // release lock protecting free lists
396        busylock_release( &mgr->lock );
397
398#if DEBUG_VMM_MMAP
399vmm_mmap_display( vmm );
400#endif
401
402    return current_vseg;
403
404}  // end vmm_mmap_alloc()
405
406////////////////////////////////////////////////////////////////////////////////////////////
407// This static function implements the VMM MMAP specific desallocator.
408// It is called by the vmm_remove_vseg() function.
409// It releases the vseg to the relevant free_list, after trying (recursively) to
410// merge it to the buddy vseg.
411////////////////////////////////////////////////////////////////////////////////////////////
412// @ vmm      : [in] pointer on VMM.
413// @ vseg     : [in] pointer on released vseg.
414////////////////////////////////////////////////////////////////////////////////////////////
415static void vmm_mmap_free( vmm_t  * vmm,
416                           vseg_t * vseg )
417{
418
419#if DEBUG_VMM_MMAP
420thread_t * this = CURRENT_THREAD;
421uint32_t cycle = (uint32_t)hal_get_cycles();
422if( DEBUG_VMM_MMAP < cycle )
423printk("\n[%s] thread[%x,%x] for vpn_base %x / vpn_size %x / cycle %d\n",
424__FUNCTION__, this->process->pid, this->trdid, vseg->vpn_base, vseg->vpn_size, cycle );
425#endif
426
427    vseg_t * buddy_vseg;
428
429    // get mmap allocator pointer
430    mmap_mgr_t * mgr = &vmm->mmap_mgr;
431
432    // take lock protecting free lists
433    busylock_acquire( &mgr->lock );
434
435    // initialise loop variables
436    // released_vseg is the currently released vseg
437    vseg_t * released_vseg     = vseg;
438    uint32_t released_order    = bits_log2( vseg->vpn_size );
439
440        // iteratively merge the released vseg to the buddy vseg
441        // release the current page and exit when buddy not found
442    while( released_order <= CONFIG_VMM_HEAP_MAX_ORDER )
443    {
444        // compute buddy_vseg vpn_base
445                vpn_t buddy_vpn_base = released_vseg->vpn_base ^ (1 << released_order);
446       
447        // build extended pointer on free_pages_root[current_order]
448        xptr_t root_xp = XPTR( local_cxy , &mgr->free_list_root[released_order] );
449
450        // scan this free list to find the buddy vseg
451        xptr_t   iter_xp;
452        buddy_vseg = NULL;
453        XLIST_FOREACH( root_xp , iter_xp )
454        {
455            xptr_t   current_vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
456            vseg_t * current_vseg    = GET_PTR( current_vseg_xp );
457
458            if( current_vseg->vpn_base == buddy_vpn_base )
459            {
460                buddy_vseg = current_vseg;
461                break;
462            }
463        }
464       
465        if( buddy_vseg != NULL )     // buddy found => merge released & buddy
466        {
467            // update released vseg fields
468            released_vseg->vpn_size = buddy_vseg->vpn_size<<1;
469            if( released_vseg->vpn_base > buddy_vseg->vpn_base) 
470                released_vseg->vpn_base = buddy_vseg->vpn_base;
471
472            // remove buddy vseg from free_list
473            xlist_unlink( XPTR( local_cxy , &buddy_vseg->xlist ) );
474
475            // release memory allocated to buddy descriptor
476            vseg_free( buddy_vseg );
477        }
478        else                         // buddy not found => register & exit
479        {
480            // register released vseg in free list
481            xlist_add_first( root_xp , XPTR( local_cxy , &released_vseg->xlist ) );
482
483            // exit while loop
484            break;
485        }
486
487        // increment released_order
488        released_order++;
489    }
490
491    // release lock
492    busylock_release( &mgr->lock );
493
494#if DEBUG_VMM_MMAP
495vmm_mmap_display( vmm );
496#endif
497
498}  // end vmm_mmap_free()
499
500////////////////////////////////////////////////////////////////////////////////////////////
501// This static function registers one vseg in the VSL of a local process descriptor.
502////////////////////////////////////////////////////////////////////////////////////////////
503// vmm       : [in] pointer on VMM.
504// vseg      : [in] pointer on vseg.
505////////////////////////////////////////////////////////////////////////////////////////////
506void vmm_attach_vseg_to_vsl( vmm_t  * vmm,
507                             vseg_t * vseg )
508{
509    // update vseg descriptor
510    vseg->vmm = vmm;
511
512    // increment vsegs number
513    vmm->vsegs_nr++;
514
515    // add vseg in vmm list
516    xlist_add_last( XPTR( local_cxy , &vmm->vsegs_root ),
517                    XPTR( local_cxy , &vseg->xlist ) );
518
519}  // end vmm_attach_vseg_from_vsl()
520
521////////////////////////////////////////////////////////////////////////////////////////////
522// This static function removes one vseg from the VSL of a local process descriptor.
523////////////////////////////////////////////////////////////////////////////////////////////
524// vmm       : [in] pointer on VMM.
525// vseg      : [in] pointer on vseg.
526////////////////////////////////////////////////////////////////////////////////////////////
527void vmm_detach_vseg_from_vsl( vmm_t  * vmm,
528                               vseg_t * vseg )
529{
530    // update vseg descriptor
531    vseg->vmm = NULL;
532
533    // decrement vsegs number
534    vmm->vsegs_nr--;
535
536    // remove vseg from VSL
537    xlist_unlink( XPTR( local_cxy , &vseg->xlist ) );
538
539}  // end vmm_detach_from_vsl()
540
541////////////////////////////////////////////
542error_t vmm_user_init( process_t * process )
543{
544
545#if DEBUG_VMM_USER_INIT
546thread_t * this = CURRENT_THREAD;
547uint32_t cycle = (uint32_t)hal_get_cycles();
548if( DEBUG_VMM_USER_INIT )
549printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n", 
550__FUNCTION__ , this->process->pid, this->trdid, process->pid, local_cxy, cycle );
551#endif
552
553    // get pointer on VMM
554    vmm_t   * vmm = &process->vmm;
555
556// check UTILS zone
557assert( __FUNCTION__ , ((CONFIG_VMM_ARGS_SIZE + CONFIG_VMM_ENVS_SIZE) <= 
558(CONFIG_VMM_ELF_BASE - CONFIG_VMM_UTILS_BASE)) , "UTILS zone too small\n" );
559
560    // initialize lock protecting the VSL
561        remote_queuelock_init( XPTR( local_cxy , &vmm->vsl_lock ) , LOCK_VMM_VSL );
562
563    // initialize STACK allocator
564    vmm_stack_init( vmm );
565
566    // initialize MMAP allocator
567    vmm_mmap_init( vmm );
568
569    // initialize instrumentation counters
570        vmm->false_pgfault_nr    = 0;
571        vmm->local_pgfault_nr    = 0;
572        vmm->global_pgfault_nr   = 0;
573        vmm->false_pgfault_cost  = 0;
574        vmm->local_pgfault_cost  = 0;
575        vmm->global_pgfault_cost = 0;
576
577    hal_fence();
578
579#if DEBUG_VMM_USER_INIT
580cycle = (uint32_t)hal_get_cycles();
581if( DEBUG_VMM_USER_INIT )
582printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n", 
583__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy, cycle );
584#endif
585
586    return 0;
587
588}  // end vmm_user_init()
589
590//////////////////////////////////////////
591void vmm_user_reset( process_t * process )
592{
593    xptr_t       vseg_xp;
594        vseg_t     * vseg;
595    vseg_type_t  vseg_type;
596
597#if DEBUG_VMM_USER_RESET
598uint32_t   cycle;
599thread_t * this = CURRENT_THREAD;
600#endif
601
602#if (DEBUG_VMM_USER_RESET & 1 )
603cycle = (uint32_t)hal_get_cycles();
604if( DEBUG_VMM_USER_RESET < cycle )
605printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
606__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy, cycle );
607#endif
608
609#if (DEBUG_VMM_USER_RESET & 1 )
610if( DEBUG_VMM_USER_RESET < cycle )
611hal_vmm_display( XPTR( local_cxy , process ) , true );
612#endif
613
614    // get pointer on local VMM
615    vmm_t * vmm = &process->vmm;
616
617    // build extended pointer on VSL root and VSL lock
618    xptr_t   root_xp = XPTR( local_cxy , &vmm->vsegs_root );
619    xptr_t   lock_xp = XPTR( local_cxy , &vmm->vsl_lock );
620
621    // take the VSL lock
622        remote_queuelock_acquire( lock_xp );
623
624    // scan the VSL to delete all non kernel vsegs
625    // (we don't use a FOREACH in case of item deletion)
626    xptr_t   iter_xp;
627    xptr_t   next_xp;
628        for( iter_xp = hal_remote_l64( root_xp ) ; 
629         iter_xp != root_xp ;
630         iter_xp = next_xp )
631        {
632        // save extended pointer on next item in xlist
633        next_xp = hal_remote_l64( iter_xp );
634
635        // get pointers on current vseg in VSL
636        vseg_xp   = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
637        vseg      = GET_PTR( vseg_xp );
638        vseg_type = vseg->type;
639
640#if( DEBUG_VMM_USER_RESET & 1 )
641if( DEBUG_VMM_USER_RESET < cycle )
642printk("\n[%s] found %s vseg / vpn_base %x / vpn_size %d\n",
643__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
644#endif
645        // delete non kernel vseg 
646        if( (vseg_type != VSEG_TYPE_KCODE) && 
647            (vseg_type != VSEG_TYPE_KDATA) && 
648            (vseg_type != VSEG_TYPE_KDEV ) )
649        {
650            // remove vseg from VSL
651            vmm_remove_vseg( process , vseg );
652
653#if( DEBUG_VMM_USER_RESET & 1 )
654if( DEBUG_VMM_USER_RESET < cycle )
655printk("\n[%s] %s vseg deleted / vpn_base %x / vpn_size %d\n",
656__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
657#endif
658        }
659        else
660        {
661
662#if( DEBUG_VMM_USER_RESET & 1 )
663if( DEBUG_VMM_USER_RESET < cycle )
664printk("\n[%s] keep %s vseg / vpn_base %x / vpn_size %d\n",
665__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
666#endif
667        }
668        }  // end loop on vsegs in VSL
669
670    // release the VSL lock
671        remote_queuelock_release( lock_xp );
672
673// FIXME il faut gérer les process copies...
674
675    // re-initialise VMM
676    vmm_user_init( process );
677
678#if DEBUG_VMM_USER_RESET
679cycle = (uint32_t)hal_get_cycles();
680if( DEBUG_VMM_USER_RESET < cycle )
681printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n",
682__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy , cycle );
683#endif
684
685#if (DEBUG_VMM_USER_RESET & 1 )
686if( DEBUG_VMM_USER_RESET < cycle )
687hal_vmm_display( XPTR( local_cxy , process ) , true );
688#endif
689
690}  // end vmm_user_reset()
691
692/////////////////////////////////////////////////
693void vmm_global_delete_vseg( process_t * process,
694                             intptr_t    base )
695{
696    cxy_t           owner_cxy;
697    lpid_t          owner_lpid;
698    reg_t           save_sr;
699
700    xptr_t          process_lock_xp;
701    xptr_t          process_root_xp;
702    xptr_t          process_iter_xp;
703
704    xptr_t          remote_process_xp;
705    cxy_t           remote_process_cxy;
706    process_t     * remote_process_ptr;
707
708    xptr_t          vsl_root_xp;
709    xptr_t          vsl_lock_xp;
710    xptr_t          vsl_iter_xp;
711
712    rpc_desc_t      rpc;                  // shared rpc descriptor for parallel RPCs
713    uint32_t        responses;            // RPC responses counter
714
715    thread_t      * this    = CURRENT_THREAD;
716    pid_t           pid     = process->pid;
717    cluster_t     * cluster = LOCAL_CLUSTER;
718
719#if DEBUG_VMM_GLOBAL_DELETE_VSEG
720uint32_t cycle = (uint32_t)hal_get_cycles();
721#endif
722
723#if (DEBUG_VMM_GLOBAL_DELETE_VSEG & 1)
724if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
725printk("\n[%s] thread[%x,%x] enters / process %x / base %x / cycle %d\n",
726__FUNCTION__, this->process->pid, this->trdid, process->pid, base, cycle );
727#endif
728
729    // initialize a shared RPC descriptor
730    rpc.rsp       = &responses;
731    rpc.blocking  = false;                  // non blocking behaviour for rpc_send()
732    rpc.index     = RPC_VMM_REMOVE_VSEG;
733    rpc.thread    = this;
734    rpc.lid       = this->core->lid;
735    rpc.args[0]   = this->process->pid;
736    rpc.args[1]   = base;
737
738    // get owner process cluster and local index
739    owner_cxy        = CXY_FROM_PID( pid );
740    owner_lpid       = LPID_FROM_PID( pid );
741
742    // get extended pointer on root and lock of process copies xlist in owner cluster
743    process_root_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_root[owner_lpid] );
744    process_lock_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_lock[owner_lpid] );
745
746    // mask IRQs
747    hal_disable_irq( &save_sr );
748
749    // client thread blocks itself
750    thread_block( XPTR( local_cxy , this ) , THREAD_BLOCKED_RPC );
751
752    // take the lock protecting process copies
753    remote_queuelock_acquire( process_lock_xp );
754
755    // initialize responses counter
756    responses = 0;
757
758    // loop on process copies
759    XLIST_FOREACH( process_root_xp , process_iter_xp )
760    {
761        // get cluster and local pointer on remote process
762        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
763        remote_process_ptr = GET_PTR( remote_process_xp );
764        remote_process_cxy = GET_CXY( remote_process_xp );
765
766        // build extended pointers on remote VSL root and lock
767        vsl_root_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsegs_root );
768        vsl_lock_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsl_lock );
769
770        // get lock on remote VSL
771        remote_queuelock_acquire( vsl_lock_xp );
772
773        // loop on vsegs in remote process VSL
774        XLIST_FOREACH( vsl_root_xp , vsl_iter_xp )
775        {
776            // get pointers on current vseg
777            xptr_t   vseg_xp  = XLIST_ELEMENT( vsl_iter_xp , vseg_t , xlist );
778            vseg_t * vseg_ptr = GET_PTR( vseg_xp );
779
780            // get current vseg base address
781            intptr_t vseg_base = (intptr_t)hal_remote_lpt( XPTR( remote_process_cxy,
782                                                                 &vseg_ptr->min ) );
783
784            if( vseg_base == base )   // found searched vseg
785            {
786                // atomically increment responses counter
787                hal_atomic_add( &responses , 1 );
788
789#if (DEBUG_VMM_GLOBAL_DELETE_VSEG & 1)
790if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
791printk("\n[%s] thread[%x,%x] register RPC request in cluster %x\n",
792__FUNCTION__, this->process->pid, this->trdid, remote_process_cxy );
793#endif
794                // send RPC to remote cluster
795                rpc_send( remote_process_cxy , &rpc );
796
797                // exit loop on vsegs
798                break;
799            }
800        }  // end of loop on vsegs
801
802        // release lock on remote VSL
803        remote_queuelock_release( vsl_lock_xp );
804
805    }  // end of loop on process copies
806
807    // release the lock protecting process copies
808    remote_queuelock_release( process_lock_xp );
809
810#if (DEBUG_VMM_GLOBAL_DELETE_VSEG & 1)
811if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
812printk("\n[%s] thread[%x,%x] deschedule / process %x / base %x\n",
813__FUNCTION__, this->process->pid, this->trdid, process->pid, base );
814#endif
815
816    // client thread deschedule
817    sched_yield("blocked on rpc_vmm_delete_vseg");
818 
819    // restore IRQs
820    hal_restore_irq( save_sr );
821
822#if DEBUG_VMM_GLOBAL_DELETE_VSEG
823cycle = (uint32_t)hal_get_cycles();
824if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
825printk("\n[%s] thread[%x,%x] exit / process %x / base %x / cycle %d\n",
826__FUNCTION__, this->process->pid, this->trdid, process->pid, base, cycle );
827#endif
828
829}  // end vmm_global_delete_vseg()
830
831////////////////////////////////////////////////
832void vmm_global_resize_vseg( process_t * process,
833                             intptr_t    base,
834                             intptr_t    new_base,
835                             intptr_t    new_size )
836{
837    cxy_t           owner_cxy;
838    lpid_t          owner_lpid;
839    reg_t           save_sr;
840
841    xptr_t          process_lock_xp;
842    xptr_t          process_root_xp;
843    xptr_t          process_iter_xp;
844
845    xptr_t          remote_process_xp;
846    cxy_t           remote_process_cxy;
847    process_t     * remote_process_ptr;
848
849    xptr_t          vsl_root_xp;
850    xptr_t          vsl_lock_xp;
851    xptr_t          vsl_iter_xp;
852
853    rpc_desc_t      rpc;                  // shared rpc descriptor for parallel RPCs
854    uint32_t        responses;            // RPC responses counter
855
856    thread_t      * this    = CURRENT_THREAD; 
857    pid_t           pid     = process->pid;
858    cluster_t     * cluster = LOCAL_CLUSTER;
859
860#if DEBUG_VMM_GLOBAL_RESIZE_VSEG
861uint32_t cycle = (uint32_t)hal_get_cycles();
862#endif
863
864#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
865if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
866printk("\n[%s] thread[%x,%x] : process %x / base %x / new_base %x / new_size %x / cycle %d\n",
867__FUNCTION__, this->process->pid, this->trdid, process->pid, base, new_base, new_size, cycle );
868#endif
869
870    // initialize a shared RPC descriptor
871    rpc.rsp       = &responses;
872    rpc.blocking  = false;                  // non blocking behaviour for rpc_send()
873    rpc.index     = RPC_VMM_REMOVE_VSEG;
874    rpc.thread    = this;
875    rpc.lid       = this->core->lid;
876    rpc.args[0]   = this->process->pid;
877    rpc.args[1]   = base;
878    rpc.args[2]   = new_base;
879    rpc.args[3]   = new_size;
880
881    // get owner process cluster and local index
882    owner_cxy        = CXY_FROM_PID( pid );
883    owner_lpid       = LPID_FROM_PID( pid );
884
885    // get extended pointer on root and lock of process copies xlist in owner cluster
886    process_root_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_root[owner_lpid] );
887    process_lock_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_lock[owner_lpid] );
888
889    // mask IRQs
890    hal_disable_irq( &save_sr );
891
892    // client thread blocks itself
893    thread_block( XPTR( local_cxy , this ) , THREAD_BLOCKED_RPC );
894
895    // take the lock protecting process copies
896    remote_queuelock_acquire( process_lock_xp );
897
898    // initialize responses counter
899    responses = 0;
900
901    // loop on process copies
902    XLIST_FOREACH( process_root_xp , process_iter_xp )
903    {
904        // get cluster and local pointer on remote process
905        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
906        remote_process_ptr = GET_PTR( remote_process_xp );
907        remote_process_cxy = GET_CXY( remote_process_xp );
908
909        // build extended pointers on remote VSL root and lock
910        vsl_root_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsegs_root );
911        vsl_lock_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsl_lock );
912
913        // get lock on remote VSL
914        remote_queuelock_acquire( vsl_lock_xp );
915
916        // loop on vsegs in remote process VSL
917        XLIST_FOREACH( vsl_root_xp , vsl_iter_xp )
918        {
919            // get pointers on current vseg
920            xptr_t   vseg_xp  = XLIST_ELEMENT( vsl_iter_xp , vseg_t , xlist );
921            vseg_t * vseg_ptr = GET_PTR( vseg_xp );
922
923            // get current vseg base address
924            intptr_t vseg_base = (intptr_t)hal_remote_lpt( XPTR( remote_process_cxy,
925                                                                 &vseg_ptr->min ) );
926
927            if( vseg_base == base )   // found searched vseg
928            {
929                // atomically increment responses counter
930                hal_atomic_add( &responses , 1 );
931
932#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
933if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
934printk("\n[%s] thread[%x,%x] register RPC request in cluster %x\n",
935__FUNCTION__, this->process->pid, this->trdid, remote_process_cxy );
936#endif
937                // send RPC to remote cluster
938                rpc_send( remote_process_cxy , & rpc );
939
940                // exit loop on vsegs
941                break;
942            }
943
944        }  // end of loop on vsegs
945
946#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
947if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
948hal_vmm_display( remote_process_xp , false );
949#endif
950
951        // release lock on remote VSL
952        remote_queuelock_release( vsl_lock_xp );
953
954    }  // end of loop on process copies
955
956    // release the lock protecting process copies
957    remote_queuelock_release( process_lock_xp );
958
959#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
960if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
961printk("\n[%s] thread[%x,%x] deschedule / process %x / base %x\n",
962__FUNCTION__, this->process->pid, this->trdid, process->pid, base );
963#endif
964
965    // client thread deschedule
966    sched_yield("blocked on rpc_vmm_delete_vseg");
967
968    // restore IRQs
969    hal_restore_irq( save_sr );
970
971#if DEBUG_VMM_GLOBAL_RESIZE_VSEG
972cycle = (uint32_t)hal_get_cycles();
973if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
974printk("\n[%s] thread[%x,%x] exit for process %x / base %x / cycle %d\n",
975__FUNCTION__, this->process->pid, this->trdid, process->pid , base, cycle );
976#endif
977
978}  // end vmm_global_resize_vseg()
979
980////////////////////////////////////////////////
981void vmm_global_update_pte( process_t * process,
982                            vpn_t       vpn,
983                            uint32_t    attr,
984                            ppn_t       ppn )
985{
986    pid_t           pid;
987    cxy_t           owner_cxy;
988    lpid_t          owner_lpid;
989
990    xlist_entry_t * process_root_ptr;
991    xptr_t          process_root_xp;
992    xptr_t          process_iter_xp;
993
994    xptr_t          remote_process_xp;
995    cxy_t           remote_process_cxy;
996    process_t     * remote_process_ptr;
997    xptr_t          remote_gpt_xp;
998
999#if DEBUG_VMM_GLOBAL_UPDATE_PTE
1000uint32_t cycle = (uint32_t)hal_get_cycles();
1001thread_t * this = CURRENT_THREAD;
1002#endif
1003
1004
1005#if (DEBUG_VMM_GLOBAL_UPDATE_PTE & 1)
1006if( DEBUG_VMM_GLOBAL_UPDATE_PTE < cycle )
1007printk("\n[%s] thread[%x,%x] enter for process %x / vpn %x / attr %x / ppn %x / ycle %d\n",
1008__FUNCTION__, this->process->pid, this->trdid, process->pid, vpn, attr, ppn, cycle );
1009#endif
1010
1011    // get owner process cluster and local index
1012    pid              = process->pid;
1013    owner_cxy        = CXY_FROM_PID( pid );
1014    owner_lpid       = LPID_FROM_PID( pid );
1015
1016    // get extended pointer on root of process copies xlist in owner cluster
1017    process_root_ptr = &LOCAL_CLUSTER->pmgr.copies_root[owner_lpid];
1018    process_root_xp  = XPTR( owner_cxy , process_root_ptr );
1019
1020    // loop on process copies
1021    XLIST_FOREACH( process_root_xp , process_iter_xp )
1022    {
1023        // get cluster and local pointer on remote process
1024        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
1025        remote_process_ptr = GET_PTR( remote_process_xp );
1026        remote_process_cxy = GET_CXY( remote_process_xp );
1027
1028#if (DEBUG_VMM_GLOBAL_UPDATE_PTE & 1)
1029if( DEBUG_VMM_GLOBAL_UPDATE_PTE < cycle )
1030printk("\n[%s] thread[%x,%x] handling vpn %x for process %x in cluster %x\n",
1031__FUNCTION__, this->process->pid, this->trdid, vpn, process->pid, remote_process_cxy );
1032#endif
1033
1034        // get extended pointer on remote gpt
1035        remote_gpt_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.gpt );
1036
1037        // update remote GPT
1038        hal_gpt_update_pte( remote_gpt_xp, vpn, attr, ppn );
1039    } 
1040
1041#if DEBUG_VMM_GLOBAL_UPDATE_PTE
1042cycle = (uint32_t)hal_get_cycles();
1043if( DEBUG_VMM_GLOBAL_UPDATE_PTE < cycle )
1044printk("\n[%s] thread[%x,%x] exit for process %x / vpn %x / cycle %d\n",
1045__FUNCTION__, this->process->pid, this->trdid, process->pid , vpn , cycle );
1046#endif
1047
1048#if (DEBUG_VMM_GLOBAL_UPDATE_PTE & 1)
1049hal_vmm_display( process , true );
1050#endif
1051
1052}  // end vmm_global_update_pte()
1053
1054///////////////////////////////////////
1055void vmm_set_cow( process_t * process )
1056{
1057    vmm_t         * vmm;
1058
1059    xlist_entry_t * process_root_ptr;
1060    xptr_t          process_root_xp;
1061    xptr_t          process_iter_xp;
1062
1063    xptr_t          remote_process_xp;
1064    cxy_t           remote_process_cxy;
1065    process_t     * remote_process_ptr;
1066    xptr_t          remote_gpt_xp;
1067
1068    xptr_t          vseg_root_xp;
1069    xptr_t          vseg_iter_xp;
1070
1071    xptr_t          vseg_xp;
1072    vseg_t        * vseg;
1073
1074    pid_t           pid;
1075    cxy_t           owner_cxy;
1076    lpid_t          owner_lpid;
1077
1078    // get target process PID
1079    pid = process->pid;
1080
1081#if DEBUG_VMM_SET_COW
1082uint32_t   cycle = (uint32_t)hal_get_cycles();
1083thread_t * this  = CURRENT_THREAD;
1084if( DEBUG_VMM_SET_COW < cycle )
1085printk("\n[%s] thread[%x,%x] enter for process %x / cycle %d\n",
1086__FUNCTION__, this->process->pid, this->trdid, pid , cycle );
1087#endif
1088
1089#if (DEBUG_VMM_SET_COW & 1)
1090if( DEBUG_VMM_SET_COW < cycle )
1091hal_vmm_display( process , true );
1092#endif
1093
1094// check cluster is reference
1095assert( __FUNCTION__, (XPTR( local_cxy , process ) == process->ref_xp),
1096"local cluster must be process reference cluster\n");
1097
1098    // get pointer on reference VMM
1099    vmm = &process->vmm;
1100
1101    // get extended pointer on root of process copies xlist in owner cluster
1102    owner_cxy        = CXY_FROM_PID( pid );
1103    owner_lpid       = LPID_FROM_PID( pid );
1104    process_root_ptr = &LOCAL_CLUSTER->pmgr.copies_root[owner_lpid];
1105    process_root_xp  = XPTR( owner_cxy , process_root_ptr );
1106
1107    // get extended pointer on root of vsegs xlist from reference VMM
1108    vseg_root_xp  = XPTR( local_cxy , &vmm->vsegs_root ); 
1109
1110    // loop on target process copies
1111    XLIST_FOREACH( process_root_xp , process_iter_xp )
1112    {
1113        // get cluster and local pointer on remote process copy
1114        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
1115        remote_process_ptr = GET_PTR( remote_process_xp );
1116        remote_process_cxy = GET_CXY( remote_process_xp );
1117
1118#if (DEBUG_VMM_SET_COW & 1)
1119if( DEBUG_VMM_SET_COW < cycle )
1120printk("\n[%s] thread[%x,%x] (%x) handles process %x in cluster %x\n",
1121__FUNCTION__, this->process->pid, this->trdid, this, pid, remote_process_cxy );
1122#endif
1123
1124        // get extended pointer on remote gpt
1125        remote_gpt_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.gpt );
1126
1127        // loop on vsegs in (local) reference process VSL
1128        XLIST_FOREACH( vseg_root_xp , vseg_iter_xp )
1129        {
1130            // get pointer on vseg
1131            vseg_xp  = XLIST_ELEMENT( vseg_iter_xp , vseg_t , xlist );
1132            vseg     = GET_PTR( vseg_xp );
1133
1134            // get vseg type, base and size
1135            uint32_t type     = vseg->type;
1136            vpn_t    vpn_base = vseg->vpn_base;
1137            vpn_t    vpn_size = vseg->vpn_size;
1138
1139#if (DEBUG_VMM_SET_COW & 1)
1140if( DEBUG_VMM_SET_COW < cycle )
1141printk("\n[%s] thread[%x,%x] found vseg %s / vpn_base = %x / vpn_size = %x\n",
1142__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(type), vpn_base, vpn_size );
1143#endif
1144            // only DATA, ANON and REMOTE vsegs
1145            if( (type == VSEG_TYPE_DATA)  ||
1146                (type == VSEG_TYPE_ANON)  ||
1147                (type == VSEG_TYPE_REMOTE) )
1148            {
1149                vpn_t      vpn;
1150                uint32_t   attr;
1151                ppn_t      ppn;
1152                xptr_t     page_xp;
1153                cxy_t      page_cxy;
1154                page_t   * page_ptr;
1155                xptr_t     forks_xp;
1156                xptr_t     lock_xp;
1157
1158                // update flags in remote GPT
1159                hal_gpt_set_cow( remote_gpt_xp,
1160                                 vpn_base,
1161                                 vpn_size ); 
1162
1163                // atomically increment pending forks counter in physical pages,
1164                // this is only done once, when handling the reference copy
1165                if( remote_process_cxy == local_cxy )
1166                {
1167
1168#if (DEBUG_VMM_SET_COW & 1)
1169if( DEBUG_VMM_SET_COW < cycle )
1170printk("\n[%s] thread[%x,%x] handles vseg %s / vpn_base = %x / vpn_size = %x\n",
1171__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(type), vpn_base, vpn_size );
1172#endif
1173                    // scan all pages in vseg
1174                    for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
1175                    {
1176                        // get page attributes and PPN from reference GPT
1177                        hal_gpt_get_pte( remote_gpt_xp , vpn , &attr , &ppn ); 
1178
1179                        // atomically update pending forks counter if page is mapped
1180                        if( attr & GPT_MAPPED )
1181                        {
1182                            // get pointers and cluster on page descriptor
1183                            page_xp  = ppm_ppn2page( ppn );
1184                            page_cxy = GET_CXY( page_xp );
1185                            page_ptr = GET_PTR( page_xp );
1186
1187                            // get extended pointers on "forks" and "lock"
1188                            forks_xp = XPTR( page_cxy , &page_ptr->forks );
1189                            lock_xp  = XPTR( page_cxy , &page_ptr->lock );
1190
1191                            // take lock protecting "forks" counter
1192                            remote_busylock_acquire( lock_xp );
1193
1194                            // increment "forks"
1195                            hal_remote_atomic_add( forks_xp , 1 );
1196
1197                            // release lock protecting "forks" counter
1198                            remote_busylock_release( lock_xp );
1199                        }
1200                    }   // end loop on vpn
1201
1202#if (DEBUG_VMM_SET_COW & 1)
1203if( DEBUG_VMM_SET_COW < cycle )
1204printk("\n[%s] thread[%x,%x] completes vseg %s / vpn_base = %x / vpn_size = %x\n",
1205__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(type), vpn_base, vpn_size );
1206#endif
1207                }   // end if local
1208            }   // end if vseg type
1209        }   // end loop on vsegs
1210    }   // end loop on process copies
1211 
1212#if DEBUG_VMM_SET_COW
1213cycle = (uint32_t)hal_get_cycles();
1214if( DEBUG_VMM_SET_COW < cycle )
1215printk("\n[%s] thread[%x,%x] exit for process %x / cycle %d\n",
1216__FUNCTION__, this->process->pid, this->trdid, process->pid , cycle );
1217#endif
1218
1219}  // end vmm_set-cow()
1220
1221/////////////////////////////////////////////////
1222error_t vmm_fork_copy( process_t * child_process,
1223                       xptr_t      parent_process_xp )
1224{
1225    error_t     error;
1226    cxy_t       parent_cxy;
1227    process_t * parent_process;
1228    vmm_t     * parent_vmm;
1229    xptr_t      parent_lock_xp;
1230    vmm_t     * child_vmm;
1231    xptr_t      iter_xp;
1232    xptr_t      parent_vseg_xp;
1233    vseg_t    * parent_vseg;
1234    vseg_t    * child_vseg;
1235    uint32_t    type;
1236    vpn_t       vpn;           
1237    vpn_t       vpn_base;
1238    vpn_t       vpn_size;
1239    xptr_t      parent_root_xp;
1240    bool_t      mapped; 
1241    ppn_t       ppn;
1242
1243#if DEBUG_VMM_FORK_COPY
1244uint32_t cycle = (uint32_t)hal_get_cycles();
1245thread_t * this = CURRENT_THREAD;
1246if( DEBUG_VMM_FORK_COPY < cycle )
1247printk("\n[%s] thread %x enter / cycle %d\n",
1248__FUNCTION__ , this->process->pid, this->trdid, cycle );
1249#endif
1250
1251    // get parent process cluster and local pointer
1252    parent_cxy     = GET_CXY( parent_process_xp );
1253    parent_process = GET_PTR( parent_process_xp );
1254
1255    // get local pointers on parent and child VMM
1256    parent_vmm = &parent_process->vmm; 
1257    child_vmm  = &child_process->vmm;
1258
1259    // build extended pointer on parent VSL root and lock
1260    parent_root_xp = XPTR( parent_cxy , &parent_vmm->vsegs_root );
1261    parent_lock_xp = XPTR( parent_cxy , &parent_vmm->vsl_lock );
1262
1263    // take the lock protecting the parent VSL
1264    remote_queuelock_acquire( parent_lock_xp );
1265
1266    // loop on parent VSL xlist
1267    XLIST_FOREACH( parent_root_xp , iter_xp )
1268    {
1269        // get pointers on current parent vseg
1270        parent_vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
1271        parent_vseg    = GET_PTR( parent_vseg_xp );
1272
1273        // get vseg type
1274        type = hal_remote_l32( XPTR( parent_cxy , &parent_vseg->type ) );
1275       
1276#if DEBUG_VMM_FORK_COPY
1277cycle = (uint32_t)hal_get_cycles();
1278if( DEBUG_VMM_FORK_COPY < cycle )
1279printk("\n[%s] thread[%x,%x] found parent vseg %s / vpn_base = %x / cycle %d\n",
1280__FUNCTION__ , this->process->pid, this->trdid, vseg_type_str(type),
1281hal_remote_l32( XPTR( parent_cxy , &parent_vseg->vpn_base ) ) , cycle );
1282#endif
1283
1284        // all parent vsegs - but STACK and kernel vsegs - must be copied in child VSL
1285        if( (type != VSEG_TYPE_STACK) && (type != VSEG_TYPE_KCODE) &&
1286            (type != VSEG_TYPE_KDATA) && (type != VSEG_TYPE_KDEV) )
1287        {
1288            // allocate memory for a new child vseg
1289            child_vseg = vseg_alloc();
1290            if( child_vseg == NULL )   // release all allocated vsegs
1291            {
1292                vmm_destroy( child_process );
1293                printk("\n[ERROR] in %s : cannot create vseg for child\n", __FUNCTION__ );
1294                return -1;
1295            }
1296
1297            // copy parent vseg to child vseg
1298            vseg_init_from_ref( child_vseg , parent_vseg_xp );
1299
1300            // build extended pointer on child VSL lock
1301            xptr_t child_lock_xp = XPTR( local_cxy , &child_vmm->vsl_lock );
1302 
1303            // take the child VSL lock
1304            remote_queuelock_acquire( child_lock_xp );
1305
1306            // register child vseg in child VSL
1307            vmm_attach_vseg_to_vsl( child_vmm , child_vseg );
1308
1309            // release the child VSL lock
1310            remote_queuelock_release( child_lock_xp );
1311
1312#if DEBUG_VMM_FORK_COPY
1313cycle = (uint32_t)hal_get_cycles();
1314if( DEBUG_VMM_FORK_COPY < cycle )
1315printk("\n[%s] thread[%x,%x] copied vseg %s / vpn_base = %x to child VSL / cycle %d\n",
1316__FUNCTION__ , this->process->pid, this->trdid, vseg_type_str(type),
1317hal_remote_l32( XPTR( parent_cxy , &parent_vseg->vpn_base ) ) , cycle );
1318#endif
1319            // copy DATA, ANON, REMOTE, FILE parent GPT entries to child GPT
1320            if( type != VSEG_TYPE_CODE )
1321            {
1322                // activate the COW for DATA, ANON, REMOTE vsegs only
1323                // cow = ( type != VSEG_TYPE_FILE );
1324
1325                vpn_base = child_vseg->vpn_base;
1326                vpn_size = child_vseg->vpn_size;
1327
1328                // scan pages in parent vseg
1329                for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
1330                {
1331                    error = hal_gpt_pte_copy( &child_vmm->gpt,
1332                                              vpn,
1333                                              XPTR( parent_cxy , &parent_vmm->gpt ),
1334                                              vpn,
1335                                              false,      // does not handle COW flag
1336                                              &ppn,       // unused
1337                                              &mapped );  // unused
1338                    if( error )
1339                    {
1340                        vmm_destroy( child_process );
1341                        printk("\n[ERROR] in %s : cannot copy GPT\n", __FUNCTION__ );
1342                        return -1;
1343                    }
1344
1345#if DEBUG_VMM_FORK_COPY
1346cycle = (uint32_t)hal_get_cycles();
1347if( DEBUG_VMM_FORK_COPY < cycle )
1348printk("\n[%s] thread[%x,%x] copied vpn %x to child GPT / cycle %d\n",
1349__FUNCTION__ , this->process->pid, this->trdid , vpn , cycle );
1350#endif
1351                }
1352            }   // end if no code & no stack
1353        }   // end if no stack
1354    }   // end loop on vsegs
1355
1356    // release the parent VSL lock in read mode
1357    remote_queuelock_release( parent_lock_xp );
1358
1359/* deprecated [AG] : this is already done by the vmm_user_init() funcfion
1360
1361    // initialize the child VMM STACK allocator
1362    vmm_stack_init( child_vmm );
1363
1364    // initialize the child VMM MMAP allocator
1365    vmm_mmap_init( child_vmm );
1366
1367    // initialize instrumentation counters
1368        child_vmm->false_pgfault_nr    = 0;
1369        child_vmm->local_pgfault_nr    = 0;
1370        child_vmm->global_pgfault_nr   = 0;
1371        child_vmm->false_pgfault_cost  = 0;
1372        child_vmm->local_pgfault_cost  = 0;
1373        child_vmm->global_pgfault_cost = 0;
1374*/
1375    // copy base addresses from parent VMM to child VMM
1376    child_vmm->args_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->args_vpn_base));
1377    child_vmm->envs_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->envs_vpn_base));
1378    child_vmm->heap_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->heap_vpn_base));
1379    child_vmm->code_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->code_vpn_base));
1380    child_vmm->data_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->data_vpn_base));
1381
1382    child_vmm->entry_point = (intptr_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->entry_point));
1383
1384    hal_fence();
1385
1386#if DEBUG_VMM_FORK_COPY
1387cycle = (uint32_t)hal_get_cycles();
1388if( DEBUG_VMM_FORK_COPY < cycle )
1389printk("\n[%s] thread[%x,%x] exit successfully / cycle %d\n",
1390__FUNCTION__ , this->process->pid, this->trdid , cycle );
1391#endif
1392
1393    return 0;
1394
1395}  // vmm_fork_copy()
1396
1397///////////////////////////////////////
1398void vmm_destroy( process_t * process )
1399{
1400    xptr_t   vseg_xp;
1401        vseg_t * vseg;
1402
1403#if DEBUG_VMM_DESTROY
1404uint32_t   cycle = (uint32_t)hal_get_cycles();
1405thread_t * this  = CURRENT_THREAD;
1406if( DEBUG_VMM_DESTROY < cycle )
1407printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
1408__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy, cycle );
1409#endif
1410
1411#if (DEBUG_VMM_DESTROY & 1 )
1412if( DEBUG_VMM_DESTROY < cycle )
1413hal_vmm_display( XPTR( local_cxy, process ) , true );
1414#endif
1415
1416    // get pointer on local VMM
1417    vmm_t  * vmm = &process->vmm;
1418
1419    // build extended pointer on VSL root, VSL lock and GPT lock
1420    xptr_t   vsl_root_xp = XPTR( local_cxy , &vmm->vsegs_root );
1421    xptr_t   vsl_lock_xp = XPTR( local_cxy , &vmm->vsl_lock );
1422
1423    // take the VSL lock
1424    remote_queuelock_acquire( vsl_lock_xp );
1425
1426    // scan the VSL to delete all registered vsegs
1427    // (we don't use a FOREACH in case of item deletion)
1428    xptr_t  iter_xp;
1429    xptr_t  next_xp;
1430        for( iter_xp = hal_remote_l64( vsl_root_xp ) ; 
1431         iter_xp != vsl_root_xp ;
1432         iter_xp = next_xp )
1433        {
1434        // save extended pointer on next item in xlist
1435        next_xp = hal_remote_l64( iter_xp );
1436
1437        // get pointers on current vseg in VSL
1438        vseg_xp   = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
1439        vseg      = GET_PTR( vseg_xp );
1440
1441        // delete vseg and release physical pages
1442        vmm_remove_vseg( process , vseg );
1443
1444#if( DEBUG_VMM_DESTROY & 1 )
1445if( DEBUG_VMM_DESTROY < cycle )
1446printk("\n[%s] %s vseg deleted / vpn_base %x / vpn_size %d\n",
1447__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
1448#endif
1449
1450        }
1451
1452    // release the VSL lock
1453    remote_queuelock_release( vsl_lock_xp );
1454
1455    // remove all registered MMAP vsegs from free_lists in MMAP allocator
1456    uint32_t i;
1457    for( i = 0 ; i <= CONFIG_VMM_HEAP_MAX_ORDER ; i++ )
1458    {
1459        // build extended pointer on free list root
1460        xptr_t root_xp = XPTR( local_cxy , &vmm->mmap_mgr.free_list_root[i] );
1461 
1462        // scan zombi_list[i]
1463            while( !xlist_is_empty( root_xp ) )
1464            {
1465                    vseg_xp = XLIST_FIRST( root_xp , vseg_t , xlist );
1466            vseg    = GET_PTR( vseg_xp );
1467
1468#if( DEBUG_VMM_DESTROY & 1 )
1469if( DEBUG_VMM_DESTROY < cycle )
1470printk("\n[%s] found zombi vseg / vpn_base %x / vpn_size %d\n",
1471__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
1472#endif
1473            // clean vseg descriptor
1474            vseg->vmm = NULL;
1475
1476            // remove vseg from  zombi_list
1477            xlist_unlink( XPTR( local_cxy , &vseg->xlist ) );
1478
1479                    // release vseg descriptor
1480            vseg_free( vseg );
1481
1482#if( DEBUG_VMM_DESTROY & 1 )
1483if( DEBUG_VMM_DESTROY < cycle )
1484printk("\n[%s] zombi vseg released / vpn_base %x / vpn_size %d\n",
1485__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
1486#endif
1487            }
1488    }
1489
1490    // release memory allocated to the GPT itself
1491    hal_gpt_destroy( &vmm->gpt );
1492
1493#if DEBUG_VMM_DESTROY
1494cycle = (uint32_t)hal_get_cycles();
1495if( DEBUG_VMM_DESTROY < cycle )
1496printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n",
1497__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy , cycle );
1498#endif
1499
1500}  // end vmm_destroy()
1501
1502/////////////////////////////////////////////////
1503vseg_t * vmm_check_conflict( process_t * process,
1504                             vpn_t       vpn_base,
1505                             vpn_t       vpn_size )
1506{
1507    vmm_t        * vmm = &process->vmm;
1508
1509    // scan the VSL
1510        vseg_t       * vseg;
1511    xptr_t         iter_xp;
1512    xptr_t         vseg_xp;
1513    xptr_t         root_xp = XPTR( local_cxy , &vmm->vsegs_root );
1514
1515        XLIST_FOREACH( root_xp , iter_xp )
1516        {
1517                vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
1518        vseg    = GET_PTR( vseg_xp );
1519
1520                if( ((vpn_base + vpn_size) > vseg->vpn_base) &&
1521             (vpn_base < (vseg->vpn_base + vseg->vpn_size)) ) return vseg;
1522        }
1523    return NULL;
1524
1525}  // end vmm_check_conflict()
1526
1527////////////////////////////////////////////////
1528vseg_t * vmm_create_vseg( process_t   * process,
1529                              vseg_type_t   type,
1530                          intptr_t      base,         // ltid for VSEG_TYPE_STACK
1531                              uint32_t      size,
1532                          uint32_t      file_offset,
1533                          uint32_t      file_size,
1534                          xptr_t        mapper_xp,
1535                          cxy_t         cxy )
1536{
1537    vseg_t     * vseg;          // pointer on allocated vseg descriptor
1538
1539#if DEBUG_VMM_CREATE_VSEG
1540thread_t * this  = CURRENT_THREAD;
1541uint32_t   cycle;
1542#endif
1543
1544#if (DEBUG_VMM_CREATE_VSEG & 1)
1545cycle = (uint32_t)hal_get_cycles();
1546if( DEBUG_VMM_CREATE_VSEG < cycle )
1547printk("\n[%s] thread[%x,%x] enter / process %x / %s / base %x / cxy %x / cycle %d\n",
1548__FUNCTION__, this->process->pid, this->trdid,
1549process->pid, vseg_type_str(type), base, cxy, cycle );
1550#endif
1551
1552    // get pointer on VMM
1553        vmm_t * vmm    = &process->vmm;
1554
1555    // allocate a vseg descriptor and initialize it, depending on type
1556    // we use specific allocators for "stack" and "mmap" types
1557
1558    /////////////////////////////
1559    if( type == VSEG_TYPE_STACK )
1560    {
1561        // get vseg from STACK allocator
1562        vseg = vmm_stack_alloc( vmm , base );    // base == ltid
1563       
1564        if( vseg == NULL )
1565        {
1566            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1567            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1568            return NULL;
1569        }
1570
1571        // initialize vseg
1572        vseg->type = type;
1573        vseg->vmm  = vmm;
1574        vseg->min  = vseg->vpn_base << CONFIG_PPM_PAGE_SHIFT;
1575        vseg->max  = vseg->min + (vseg->vpn_size << CONFIG_PPM_PAGE_SHIFT);
1576        vseg->cxy  = cxy;
1577
1578        vseg_init_flags( vseg , type );
1579    }
1580    /////////////////////////////////
1581    else if( type == VSEG_TYPE_FILE )
1582    {
1583        // compute page index (in mapper) for first and last byte
1584        vpn_t    vpn_min    = file_offset >> CONFIG_PPM_PAGE_SHIFT;
1585        vpn_t    vpn_max    = (file_offset + size - 1) >> CONFIG_PPM_PAGE_SHIFT;
1586
1587        // compute offset in first page and number of pages
1588        uint32_t offset = file_offset & CONFIG_PPM_PAGE_MASK;
1589        vpn_t    npages      = vpn_max - vpn_min + 1;
1590
1591        // get vseg from MMAP allocator
1592        vseg = vmm_mmap_alloc( vmm , npages );
1593
1594        if( vseg == NULL )
1595        {
1596            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1597            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1598            return NULL;
1599        }
1600
1601        // initialize vseg
1602        vseg->type        = type;
1603        vseg->vmm         = vmm;
1604        vseg->min         = (vseg->vpn_base << CONFIG_PPM_PAGE_SHIFT) + offset; 
1605        vseg->max         = vseg->min + size;
1606        vseg->file_offset = file_offset;
1607        vseg->file_size   = file_size;
1608        vseg->mapper_xp   = mapper_xp;
1609        vseg->cxy         = cxy;
1610
1611        vseg_init_flags( vseg , type );
1612    }
1613    /////////////////////////////////////////////////////////////////
1614    else if( (type == VSEG_TYPE_ANON) || (type == VSEG_TYPE_REMOTE) )
1615    {
1616        // compute number of required pages in virtual space
1617        vpn_t npages = size >> CONFIG_PPM_PAGE_SHIFT;
1618        if( size & CONFIG_PPM_PAGE_MASK) npages++;
1619       
1620        // allocate vseg from MMAP allocator
1621        vseg = vmm_mmap_alloc( vmm , npages );
1622
1623        if( vseg == NULL )
1624        {
1625            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1626            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1627            return NULL;
1628        }
1629
1630        // initialize vseg
1631        vseg->type = type;
1632        vseg->vmm  = vmm;
1633        vseg->min  = vseg->vpn_base << CONFIG_PPM_PAGE_SHIFT;
1634        vseg->max  = vseg->min + (vseg->vpn_size << CONFIG_PPM_PAGE_SHIFT);
1635        vseg->cxy  = cxy;
1636
1637        vseg_init_flags( vseg , type );
1638    }
1639    /////////////////////////////////////////////////////////////////
1640    else    // VSEG_TYPE_DATA, VSEG_TYPE_CODE or KERNEL vseg
1641    {
1642        uint32_t vpn_min = base >> CONFIG_PPM_PAGE_SHIFT;
1643        uint32_t vpn_max = (base + size - 1) >> CONFIG_PPM_PAGE_SHIFT;
1644
1645        // allocate vseg descriptor
1646            vseg = vseg_alloc();
1647
1648            if( vseg == NULL )
1649            {
1650            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1651            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1652            return NULL;
1653            }
1654        // initialize vseg
1655        vseg->type        = type;
1656        vseg->vmm         = vmm;
1657        vseg->min         = base;
1658        vseg->max         = base + size;
1659        vseg->vpn_base    = base >> CONFIG_PPM_PAGE_SHIFT;
1660        vseg->vpn_size    = vpn_max - vpn_min + 1;
1661        vseg->file_offset = file_offset;
1662        vseg->file_size   = file_size;
1663        vseg->mapper_xp   = mapper_xp;
1664        vseg->cxy         = cxy;
1665
1666        vseg_init_flags( vseg , type );
1667    }
1668
1669    // check collisions
1670    vseg_t * existing_vseg = vmm_check_conflict( process , vseg->vpn_base , vseg->vpn_size );
1671
1672    if( existing_vseg != NULL )
1673    {
1674        printk("\n[ERROR] in %s for process %x : new vseg %s [vpn_base %x / vpn_size %x]\n"
1675               "        overlap existing vseg %s [vpn_base %x / vpn_size %x]\n",
1676        __FUNCTION__ , process->pid, vseg_type_str(vseg->type), vseg->vpn_base, vseg->vpn_size, 
1677        vseg_type_str(existing_vseg->type), existing_vseg->vpn_base, existing_vseg->vpn_size );
1678        vseg_free( vseg );
1679        return NULL;
1680    }
1681
1682    // build extended pointer on VSL lock
1683    xptr_t lock_xp = XPTR( local_cxy , &vmm->vsl_lock );
1684 
1685    // take the VSL lock in write mode
1686    remote_queuelock_acquire( lock_xp );
1687
1688    // attach vseg to VSL
1689        vmm_attach_vseg_to_vsl( vmm , vseg );
1690
1691    // release the VSL lock
1692    remote_queuelock_release( lock_xp );
1693
1694#if DEBUG_VMM_CREATE_VSEG
1695cycle = (uint32_t)hal_get_cycles();
1696if( DEBUG_VMM_CREATE_VSEG < cycle )
1697printk("\n[%s] thread[%x,%x] exit / %s / vpn_base %x / vpn_size %x / cycle %d\n",
1698__FUNCTION__, this->process->pid, this->trdid,
1699vseg_type_str(type), vseg->vpn_base, vseg->vpn_size, cycle );
1700#endif
1701
1702        return vseg;
1703
1704}  // vmm_create_vseg()
1705
1706////////////////////////////////////////////////////////////////////////////////////////////
1707// This static function is called by the vmm_remove_vseg() and vmm_resize_vseg() functions
1708// to update the physical page descriptor identified by the <ppn> argument.
1709// It decrements the refcount, set the dirty bit when required, and releases the physical
1710// page to kmem depending on the vseg type.
1711// - KERNEL : refcount decremented / not released to kmem    / dirty bit not set
1712// - FILE   : refcount decremented / not released to kmem    / dirty bit set when required.
1713// - CODE   : refcount decremented / released to kmem        / dirty bit not set.
1714// - STAK   : refcount decremented / released to kmem        / dirty bit not set.
1715// - DATA   : refcount decremented / released to kmem if ref / dirty bit not set.
1716// - MMAP   : refcount decremented / released to kmem if ref / dirty bit not set.
1717////////////////////////////////////////////////////////////////////////////////////////////
1718// @ process  : local pointer on process.
1719// @ vseg     : local pointer on vseg.
1720// @ ppn      : released pysical page index.
1721// @ dirty    : set the dirty bit in page descriptor when non zero.
1722////////////////////////////////////////////////////////////////////////////////////////////
1723static void vmm_ppn_release( process_t * process,
1724                             vseg_t    * vseg,
1725                             ppn_t       ppn,
1726                             uint32_t    dirty )
1727{
1728    bool_t do_kmem_release;
1729
1730    // get vseg type
1731    vseg_type_t type = vseg->type;
1732
1733    // compute is_ref <=> this vseg is the reference vseg
1734    bool_t is_ref = (GET_CXY( process->ref_xp ) == local_cxy);
1735
1736    // get pointers on physical page descriptor
1737    xptr_t   page_xp  = ppm_ppn2page( ppn );
1738    cxy_t    page_cxy = GET_CXY( page_xp );
1739    page_t * page_ptr = GET_PTR( page_xp );
1740
1741    // decrement page refcount
1742    xptr_t count_xp = XPTR( page_cxy , &page_ptr->refcount );
1743    hal_remote_atomic_add( count_xp , -1 );
1744
1745    // compute the do_kmem_release condition depending on vseg type
1746    if( (type == VSEG_TYPE_KCODE) || 
1747        (type == VSEG_TYPE_KDATA) || 
1748        (type == VSEG_TYPE_KDEV) )           
1749    {
1750        // no physical page release for KERNEL
1751        do_kmem_release = false;
1752    }
1753    else if( type == VSEG_TYPE_FILE )
1754    {
1755        // no physical page release for KERNEL
1756        do_kmem_release = false;
1757
1758        // set dirty bit if required
1759        if( dirty ) ppm_page_do_dirty( page_xp );
1760    }   
1761    else if( (type == VSEG_TYPE_CODE)  ||
1762             (type == VSEG_TYPE_STACK) ) 
1763    {
1764        // always release physical page for private vsegs
1765        do_kmem_release = true;
1766    }
1767    else if( (type == VSEG_TYPE_ANON)  ||
1768             (type == VSEG_TYPE_REMOTE) )
1769    {
1770        // release physical page if reference cluster
1771        do_kmem_release = is_ref;
1772    }
1773    else if( is_ref )  // vseg_type == DATA in reference cluster
1774    {
1775        // get extended pointers on forks and lock field in page descriptor
1776        xptr_t forks_xp = XPTR( page_cxy , &page_ptr->forks );
1777        xptr_t lock_xp  = XPTR( page_cxy , &page_ptr->lock );
1778
1779        // take lock protecting "forks" counter
1780        remote_busylock_acquire( lock_xp );
1781
1782        // get number of pending forks from page descriptor
1783        uint32_t forks = hal_remote_l32( forks_xp );
1784
1785        // decrement pending forks counter if required
1786        if( forks )  hal_remote_atomic_add( forks_xp , -1 );
1787
1788        // release lock protecting "forks" counter
1789        remote_busylock_release( lock_xp );
1790
1791        // release physical page if forks == 0
1792        do_kmem_release = (forks == 0); 
1793    }
1794    else              // vseg_type == DATA not in reference cluster
1795    {
1796        // no physical page release if not in reference cluster
1797        do_kmem_release = false;
1798    }
1799
1800    // release physical page to relevant kmem when required
1801    if( do_kmem_release )
1802    {
1803        kmem_req_t req;
1804        req.type = KMEM_PPM;
1805        req.ptr  = GET_PTR( ppm_ppn2base( ppn ) );
1806
1807        kmem_remote_free( page_cxy , &req );
1808
1809#if DEBUG_VMM_PPN_RELEASE
1810thread_t * this = CURRENT_THREAD;
1811if( DEBUG_VMM_PPN_RELEASE < cycle )
1812printk("\n[%s] thread[%x,%x] released ppn %x to kmem\n",
1813__FUNCTION__, this->process->pid, this->trdid, ppn );
1814#endif
1815
1816    }
1817} // end vmm_ppn_release()
1818
1819//////////////////////////////////////////
1820void vmm_remove_vseg( process_t * process,
1821                      vseg_t    * vseg )
1822{
1823    uint32_t    vseg_type;  // vseg type
1824    vpn_t       vpn;        // VPN of current PTE
1825    vpn_t       vpn_min;    // VPN of first PTE
1826    vpn_t       vpn_max;    // VPN of last PTE (excluded)
1827    ppn_t       ppn;        // current PTE ppn value
1828    uint32_t    attr;       // current PTE attributes
1829
1830// check arguments
1831assert( __FUNCTION__, (process != NULL), "process argument is NULL" );
1832assert( __FUNCTION__, (vseg    != NULL), "vseg argument is NULL" );
1833
1834    // get pointers on local process VMM
1835    vmm_t * vmm = &process->vmm;
1836
1837    // build extended pointer on GPT
1838    xptr_t gpt_xp = XPTR( local_cxy , &vmm->gpt );
1839
1840    // get relevant vseg infos
1841    vseg_type = vseg->type;
1842    vpn_min   = vseg->vpn_base;
1843    vpn_max   = vpn_min + vseg->vpn_size;
1844
1845#if DEBUG_VMM_REMOVE_VSEG
1846uint32_t   cycle = (uint32_t)hal_get_cycles();
1847thread_t * this  = CURRENT_THREAD;
1848#endif
1849
1850#if (DEBUG_VMM_REMOVE_VSEG & 1 )
1851if( DEBUG_VMM_REMOVE_VSEG < cycle )
1852printk("\n[%s] thread[%x,%x] enters / process %x / type %s / base %x / cycle %d\n",
1853__FUNCTION__, this->process->pid, this->trdid, 
1854process->pid, vseg_type_str(vseg->type), vseg->min, cycle );
1855#endif
1856
1857    // loop on PTEs in GPT to unmap all mapped PTE
1858        for( vpn = vpn_min ; vpn < vpn_max ; vpn++ )
1859    {
1860        // get ppn and attr
1861        hal_gpt_get_pte( gpt_xp , vpn , &attr , &ppn );
1862
1863        if( attr & GPT_MAPPED )  // PTE is mapped
1864        { 
1865
1866#if( DEBUG_VMM_REMOVE_VSEG & 1 )
1867if( DEBUG_VMM_REMOVE_VSEG < cycle )
1868printk("\n[%s] thread[%x,%x] unmap vpn %x / ppn %x / type %s\n",
1869__FUNCTION__, this->process->pid, this->trdid, vpn , ppn, vseg_type_str(vseg_type) );
1870#endif
1871            // unmap GPT entry in local GPT
1872            hal_gpt_reset_pte( gpt_xp , vpn );
1873
1874            // release physical page depending on vseg type
1875            vmm_ppn_release( process , vseg , ppn , attr & GPT_DIRTY );
1876        }
1877    }
1878
1879    // remove vseg from VSL
1880    vmm_detach_vseg_from_vsl( vmm , vseg );
1881
1882    // release vseg descriptor depending on vseg type
1883    if( vseg_type == VSEG_TYPE_STACK )
1884    {
1885        // release slot to local stack allocator
1886        vmm_stack_free( vmm , vseg );
1887    }
1888    else if( (vseg_type == VSEG_TYPE_ANON) || 
1889             (vseg_type == VSEG_TYPE_FILE) || 
1890             (vseg_type == VSEG_TYPE_REMOTE) ) 
1891    {
1892        // release vseg to local mmap allocator
1893        vmm_mmap_free( vmm , vseg );
1894    }
1895    else
1896    {
1897        // release vseg descriptor to local kmem
1898        vseg_free( vseg );
1899    }
1900
1901#if DEBUG_VMM_REMOVE_VSEG
1902cycle = (uint32_t)hal_get_cycles();
1903if( DEBUG_VMM_REMOVE_VSEG < cycle )
1904printk("\n[%s] thread[%x,%x] exit / process %x / type %s / base %x / cycle %d\n",
1905__FUNCTION__, this->process->pid, this->trdid, 
1906process->pid, vseg_type_str(vseg->type), vseg->min, cycle );
1907#endif
1908
1909}  // end vmm_remove_vseg()
1910
1911/////////////////////////////////////////////
1912void vmm_resize_vseg( process_t * process,
1913                      vseg_t    * vseg,
1914                      intptr_t    new_base,
1915                      intptr_t    new_size )
1916{
1917    vpn_t     vpn;
1918    ppn_t     ppn;
1919    uint32_t  attr;
1920
1921// check arguments
1922assert( __FUNCTION__, (process != NULL), "process argument is NULL" );
1923assert( __FUNCTION__, (vseg    != NULL), "vseg argument is NULL" );
1924
1925#if DEBUG_VMM_RESIZE_VSEG
1926uint32_t   cycle = (uint32_t)hal_get_cycles();
1927thread_t * this  = CURRENT_THREAD;
1928#endif
1929
1930#if (DEBUG_VMM_RESIZE_VSEG & 1)
1931if( DEBUG_VMM_RESIZE_VSEG < cycle )
1932printk("\n[%s] thread[%x,%x] enter / process %x / %s / base %x / cycle %d\n",
1933__FUNCTION__, this->process->pid, this->trdid, 
1934process->pid, vseg_type_str(vseg->type), old_base, cycle );
1935#endif
1936
1937    // get existing vseg vpn_min and vpn_max
1938    vpn_t     old_vpn_min = vseg->vpn_base;
1939    vpn_t     old_vpn_max = old_vpn_min + vseg->vpn_size - 1;
1940
1941    // compute new vseg vpn_min & vpn_max 
1942    intptr_t min          = new_base;
1943    intptr_t max          = new_base + new_size;
1944    vpn_t    new_vpn_min  = min >> CONFIG_PPM_PAGE_SHIFT;
1945    vpn_t    new_vpn_max  = (max - 1) >> CONFIG_PPM_PAGE_SHIFT;
1946
1947    // build extended pointer on GPT
1948    xptr_t gpt_xp = XPTR( local_cxy , &process->vmm.gpt );
1949
1950    // loop on PTEs in GPT to unmap PTE if (old_vpn_min <= vpn < new_vpn_min)
1951        for( vpn = old_vpn_min ; vpn < new_vpn_min ; vpn++ )
1952    {
1953        // get ppn and attr
1954        hal_gpt_get_pte( gpt_xp , vpn , &attr , &ppn );
1955
1956        if( attr & GPT_MAPPED )  // PTE is mapped
1957        { 
1958
1959#if( DEBUG_VMM_RESIZE_VSEG & 1 )
1960if( DEBUG_VMM_RESIZE_VSEG < cycle )
1961printk("\n[%s] thread[%x,%x] unmap vpn %x / ppn %x / %s",
1962__FUNCTION__, this->process->pid, this->trdid, vpn , ppn, vseg_type_str(vseg_type) );
1963#endif
1964            // unmap GPT entry
1965            hal_gpt_reset_pte( gpt_xp , vpn );
1966
1967            // release physical page when required
1968            vmm_ppn_release( process , vseg , ppn , attr & GPT_DIRTY );
1969        }
1970    }
1971
1972    // loop on PTEs in GPT to unmap PTE if (new vpn_max <= vpn < old_vpn_max)
1973        for( vpn = new_vpn_max ; vpn < old_vpn_max ; vpn++ )
1974    {
1975        // get ppn and attr
1976        hal_gpt_get_pte( gpt_xp , vpn , &attr , &ppn );
1977
1978        if( attr & GPT_MAPPED )  // PTE is mapped
1979        { 
1980
1981#if( DEBUG_VMM_RESIZE_VSEG & 1 )
1982if( DEBUG_VMM_RESIZE_VSEG < cycle )
1983printk("\n[%s] thread[%x,%x] unmap vpn %x / ppn %x / %s",
1984__FUNCTION__, this->process->pid, this->trdid, vpn , ppn, vseg_type_str(vseg_type) );
1985#endif
1986            // unmap GPT entry in local GPT
1987            hal_gpt_reset_pte( gpt_xp , vpn );
1988
1989            // release physical page when required
1990            vmm_ppn_release( process , vseg , ppn , attr & GPT_DIRTY );
1991        }
1992    }
1993
1994    // resize vseg in VSL
1995    vseg->min      = min;
1996    vseg->max      = max;
1997    vseg->vpn_base = new_vpn_min;
1998    vseg->vpn_size = new_vpn_max - new_vpn_min + 1;
1999
2000#if DEBUG_VMM_RESIZE_VSEG
2001cycle = (uint32_t)hal_get_cycles();
2002if( DEBUG_VMM_RESIZE_VSEG < cycle )
2003printk("[%s] thread[%x,%x] exit / process %x / %s / base %x / cycle %d\n",
2004__FUNCTION__, this->process->pid, this->trdid, 
2005process->pid, vseg_type_str(vseg->type), vseg->min, cycle );
2006#endif
2007
2008}  // end vmm_resize_vseg
2009
2010/////////////////////////////////////////////////////////////////////////////////////////////
2011// This static function is called twice by the vmm_get_vseg() function.
2012// It scan the - possibly remote - VSL defined by the <vmm_xp> argument to find the vseg
2013// containing a given virtual address <vaddr>. It uses remote accesses to access the remote
2014// VSL if required. The VSL lock protecting the VSL must be taken by the caller.
2015/////////////////////////////////////////////////////////////////////////////////////////////
2016// @ vmm_xp  : extended pointer on the process VMM.
2017// @ vaddr   : virtual address.
2018// @ return local pointer on remote vseg if success / return NULL if not found.
2019/////////////////////////////////////////////////////////////////////////////////////////////
2020static vseg_t * vmm_vseg_from_vaddr( xptr_t     vmm_xp,
2021                                     intptr_t   vaddr )
2022{
2023    xptr_t   iter_xp;
2024    xptr_t   vseg_xp;
2025    vseg_t * vseg;
2026    intptr_t min;
2027    intptr_t max;
2028
2029    // get cluster and local pointer on target VMM
2030    vmm_t * vmm_ptr = GET_PTR( vmm_xp );
2031    cxy_t   vmm_cxy = GET_CXY( vmm_xp );
2032
2033    // build extended pointer on VSL root
2034    xptr_t root_xp = XPTR( vmm_cxy , &vmm_ptr->vsegs_root );
2035
2036    // scan the list of vsegs in VSL
2037    XLIST_FOREACH( root_xp , iter_xp )
2038    {
2039        vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
2040        vseg    = GET_PTR( vseg_xp );
2041
2042        min = hal_remote_l32( XPTR( vmm_cxy , &vseg->min ) );
2043        max = hal_remote_l32( XPTR( vmm_cxy , &vseg->max ) );
2044
2045        // return success when match
2046        if( (vaddr >= min) && (vaddr < max) ) return vseg;
2047    }
2048
2049    // return failure
2050    return NULL;
2051
2052}  // end vmm_vseg_from_vaddr()
2053
2054///////////////////////////////////////////
2055error_t  vmm_get_vseg( process_t * process,
2056                       intptr_t    vaddr,
2057                       vseg_t   ** found_vseg )
2058{
2059    xptr_t    loc_lock_xp;     // extended pointer on local VSL lock
2060    xptr_t    ref_lock_xp;     // extended pointer on reference VSL lock
2061    vseg_t  * loc_vseg;        // local pointer on local vseg
2062    vseg_t  * ref_vseg;        // local pointer on reference vseg
2063
2064    // build extended pointer on local VSL lock
2065    loc_lock_xp = XPTR( local_cxy , &process->vmm.vsl_lock );
2066     
2067    // get local VSL lock
2068    remote_queuelock_acquire( loc_lock_xp );
2069
2070    // try to get vseg from local VSL
2071    loc_vseg = vmm_vseg_from_vaddr( XPTR( local_cxy, &process->vmm ) , vaddr );
2072
2073    if (loc_vseg == NULL)   // vseg not found => access reference VSL
2074    {
2075        // get extended pointer on reference process
2076        xptr_t ref_xp = process->ref_xp;
2077
2078        // get cluster and local pointer on reference process
2079        cxy_t       ref_cxy = GET_CXY( ref_xp );
2080        process_t * ref_ptr = GET_PTR( ref_xp );
2081
2082        if( ref_cxy == local_cxy )    // local is ref => return error
2083        {
2084            printk("\n[ERROR] in %s : vaddr %x in process %x out of segment\n",
2085            __FUNCTION__, vaddr, process->pid );
2086
2087            // release local VSL lock
2088            remote_queuelock_release( loc_lock_xp );
2089
2090            return -1;
2091        }
2092        else                          // ref != local => access ref VSL                     
2093        {
2094            // build extended pointer on reference VSL lock
2095            ref_lock_xp = XPTR( ref_cxy , &ref_ptr->vmm.vsl_lock );
2096     
2097            // get reference VSL lock
2098            remote_queuelock_acquire( ref_lock_xp );
2099
2100            // try to get vseg from reference VSL
2101            ref_vseg = vmm_vseg_from_vaddr( XPTR( ref_cxy , &ref_ptr->vmm ) , vaddr );
2102
2103            if( ref_vseg == NULL )  // vseg not found => return error
2104            {
2105                // release both VSL locks
2106                remote_queuelock_release( loc_lock_xp );
2107                remote_queuelock_release( ref_lock_xp );
2108
2109                printk("\n[ERROR] in %s : vaddr %x in process %x out of segment\n",
2110                __FUNCTION__, vaddr, process->pid );
2111
2112                return -1;
2113            }
2114            else                    // vseg found => try to update local VSL
2115            {
2116                // allocate a local vseg descriptor
2117                loc_vseg = vseg_alloc();
2118
2119                if( loc_vseg == NULL )   // no memory => return error
2120                {
2121                    printk("\n[ERROR] in %s : vaddr %x in process %x / no memory\n",
2122                    __FUNCTION__, vaddr, process->pid );
2123
2124                    // release both VSL locks
2125                    remote_queuelock_release( ref_lock_xp );
2126                    remote_queuelock_release( loc_lock_xp );
2127
2128                    return -1;
2129                }
2130                else                     // update local VSL and return success
2131                {
2132                    // initialize local vseg
2133                    vseg_init_from_ref( loc_vseg , XPTR( ref_cxy , ref_vseg ) );
2134
2135                    // register local vseg in local VSL
2136                    vmm_attach_vseg_to_vsl( &process->vmm , loc_vseg );
2137
2138                    // release both VSL locks
2139                    remote_queuelock_release( ref_lock_xp );
2140                    remote_queuelock_release( loc_lock_xp );
2141
2142                    *found_vseg = loc_vseg;
2143                    return 0;
2144                }
2145            }
2146        }
2147    }
2148    else                        // vseg found in local VSL => return success
2149    {
2150        // release local VSL lock
2151        remote_queuelock_release( loc_lock_xp );
2152
2153        *found_vseg = loc_vseg;
2154        return 0;
2155    }
2156}  // end vmm_get_vseg()
2157
2158//////////////////////////////////////////////////////////////////////////////////////
2159// This static function compute the target cluster to allocate a physical page
2160// for a given <vpn> in a given <vseg>, allocates the page and returns an extended
2161// pointer on the allocated page descriptor.
2162// The vseg cannot have the FILE type.
2163//////////////////////////////////////////////////////////////////////////////////////
2164// @ vseg   : local pointer on vseg.
2165// @ vpn    : unmapped vpn.
2166// @ return an extended pointer on the allocated page descriptor.
2167//////////////////////////////////////////////////////////////////////////////////////
2168static xptr_t vmm_page_allocate( vseg_t * vseg,
2169                                 vpn_t    vpn )
2170{
2171
2172#if DEBUG_VMM_PAGE_ALLOCATE
2173uint32_t   cycle   = (uint32_t)hal_get_cycles();
2174thread_t * this    = CURRENT_THREAD;
2175if( DEBUG_VMM_PAGE_ALLOCATE < cycle )
2176printk("\n[%s] thread[%x,%x] enter for vpn %x / cycle %d\n",
2177__FUNCTION__ , this->process->pid, this->trdid, vpn, cycle );
2178#endif
2179
2180    xptr_t       page_xp;
2181    cxy_t        page_cxy;
2182    uint32_t     index;
2183
2184    uint32_t     type   = vseg->type;
2185    uint32_t     flags  = vseg->flags;
2186    uint32_t     x_size = LOCAL_CLUSTER->x_size;
2187    uint32_t     y_size = LOCAL_CLUSTER->y_size;
2188
2189// check vseg type
2190assert( __FUNCTION__, ( type != VSEG_TYPE_FILE ) , "illegal vseg type\n" );
2191
2192    // compute target cluster identifier
2193    if( flags & VSEG_DISTRIB )    // distributed => cxy depends on vpn LSB
2194    {
2195        index    = vpn & ((x_size * y_size) - 1);
2196        page_cxy = HAL_CXY_FROM_XY( (index / y_size) , (index % y_size) );
2197
2198        // If the cluster selected from VPN's LSBs is empty, we select one randomly
2199        if ( cluster_is_active( page_cxy ) == false )
2200        {
2201            page_cxy = cluster_random_select();
2202        }
2203    }
2204    else                          // other cases => cxy specified in vseg
2205    {
2206        page_cxy = vseg->cxy;
2207    }
2208
2209    // allocate one small physical page from target cluster
2210    kmem_req_t req;
2211    req.type  = KMEM_PPM;
2212    req.order = 0;
2213    req.flags = AF_ZERO;
2214
2215    // get local pointer on page base
2216    void * ptr = kmem_remote_alloc( page_cxy , &req );
2217
2218    // get extended pointer on page descriptor
2219    page_xp = ppm_base2page( XPTR( page_cxy , ptr ) );
2220
2221#if DEBUG_VMM_PAGE_ALLOCATE
2222cycle = (uint32_t)hal_get_cycles();
2223if( DEBUG_VMM_PAGE_ALLOCATE < cycle )
2224printk("\n[%s] thread[%x,%x] exit for vpn %x / ppn %x / cycle %d\n",
2225__FUNCTION__ , this->process->pid, this->trdid, vpn, ppm_page2ppn(page_xp), cycle );
2226#endif
2227
2228    return page_xp;
2229
2230}  // end vmm_page_allocate() 
2231
2232////////////////////////////////////////
2233error_t vmm_get_one_ppn( vseg_t * vseg,
2234                         vpn_t    vpn,
2235                         ppn_t  * ppn )
2236{
2237    error_t    error;
2238    xptr_t     page_xp;           // extended pointer on physical page descriptor
2239    uint32_t   page_id;           // missing page index in vseg mapper
2240    uint32_t   type;              // vseg type;
2241
2242    type      = vseg->type;
2243    page_id   = vpn - vseg->vpn_base;
2244
2245#if DEBUG_VMM_GET_ONE_PPN
2246uint32_t   cycle = (uint32_t)hal_get_cycles();
2247thread_t * this  = CURRENT_THREAD;
2248if( DEBUG_VMM_GET_ONE_PPN < cycle )
2249printk("\n[%s] thread[%x,%x] enter for vpn %x / vseg %s / page_id  %d / cycle %d\n",
2250__FUNCTION__, this->process->pid, this->trdid, vpn, vseg_type_str(type), page_id, cycle );
2251#endif
2252
2253#if (DEBUG_VMM_GET_ONE_PPN & 2)
2254if( DEBUG_VMM_GET_ONE_PPN < cycle )
2255hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2256#endif
2257
2258    // FILE type : get the physical page from the file mapper
2259    if( type == VSEG_TYPE_FILE )
2260    {
2261        // get extended pointer on mapper
2262        xptr_t mapper_xp = vseg->mapper_xp;
2263
2264assert( __FUNCTION__, (mapper_xp != XPTR_NULL),
2265"mapper not defined for a FILE vseg\n" );
2266       
2267        // get extended pointer on page descriptor
2268        page_xp = mapper_get_page( mapper_xp , page_id );
2269
2270        if ( page_xp == XPTR_NULL ) return EINVAL;
2271    }
2272
2273    // Other types : allocate a physical page from target cluster,
2274    // as defined by vseg type and vpn value
2275    else
2276    {
2277        // allocate one physical page
2278        page_xp = vmm_page_allocate( vseg , vpn );
2279
2280        if( page_xp == XPTR_NULL ) return -1;
2281
2282        // initialise missing page from .elf file mapper for DATA and CODE types
2283        // the vseg->mapper_xp field is an extended pointer on the .elf file mapper
2284        if( (type == VSEG_TYPE_CODE) || (type == VSEG_TYPE_DATA) )
2285        {
2286            // get extended pointer on mapper
2287            xptr_t     mapper_xp = vseg->mapper_xp;
2288
2289assert( __FUNCTION__, (mapper_xp != XPTR_NULL),
2290"mapper not defined for a CODE or DATA vseg\n" );
2291       
2292            // compute missing page offset in vseg
2293            uint32_t offset = page_id << CONFIG_PPM_PAGE_SHIFT;
2294
2295            // compute missing page offset in .elf file
2296            uint32_t elf_offset = vseg->file_offset + offset;
2297
2298#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2299if( DEBUG_VMM_GET_ONE_PPN < cycle )
2300printk("\n[%s] thread[%x,%x] for vpn = %x / elf_offset = %x\n",
2301__FUNCTION__, this->process->pid, this->trdid, vpn, elf_offset );
2302#endif
2303            // compute extended pointer on page base
2304            xptr_t base_xp  = ppm_page2base( page_xp );
2305
2306            // file_size (in .elf mapper) can be smaller than vseg_size (BSS)
2307            uint32_t file_size = vseg->file_size;
2308
2309            if( file_size < offset )                 // missing page fully in  BSS
2310            {
2311
2312#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2313if( DEBUG_VMM_GET_ONE_PPN < cycle )
2314printk("\n[%s] thread[%x,%x] for vpn  %x / fully in BSS\n",
2315__FUNCTION__, this->process->pid, this->trdid, vpn );
2316#endif
2317                if( GET_CXY( page_xp ) == local_cxy )
2318                {
2319                    memset( GET_PTR( base_xp ) , 0 , CONFIG_PPM_PAGE_SIZE );
2320                }
2321                else
2322                {
2323                   hal_remote_memset( base_xp , 0 , CONFIG_PPM_PAGE_SIZE );       
2324                }
2325            }
2326            else if( file_size >= (offset + CONFIG_PPM_PAGE_SIZE) )  // fully in  mapper
2327            {
2328
2329#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2330if( DEBUG_VMM_GET_ONE_PPN < cycle )
2331printk("\n[%s] thread[%x,%x] for vpn  %x / fully in mapper\n",
2332__FUNCTION__, this->process->pid, this->trdid, vpn );
2333#endif
2334                error = mapper_move_kernel( mapper_xp,
2335                                            true,             // to_buffer
2336                                            elf_offset,
2337                                            base_xp,
2338                                            CONFIG_PPM_PAGE_SIZE ); 
2339                if( error ) return EINVAL;
2340            }
2341            else  // both in mapper and in BSS :
2342                  // - (file_size - offset)             bytes from mapper
2343                  // - (page_size + offset - file_size) bytes from BSS
2344            {
2345
2346#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2347if( DEBUG_VMM_GET_ONE_PPN < cycle )
2348printk("\n[%s] thread[%x,%x] for vpn  %x / both mapper & BSS\n"
2349"      %d bytes from mapper / %d bytes from BSS\n",
2350__FUNCTION__, this->process->pid, this->trdid, vpn,
2351file_size - offset , offset + CONFIG_PPM_PAGE_SIZE - file_size  );
2352#endif
2353                // initialize mapper part
2354                error = mapper_move_kernel( mapper_xp,
2355                                            true,         // to buffer
2356                                            elf_offset,
2357                                            base_xp,
2358                                            file_size - offset ); 
2359                if( error ) return EINVAL;
2360
2361                // initialize BSS part
2362                if( GET_CXY( page_xp ) == local_cxy )
2363                {
2364                    memset( GET_PTR( base_xp ) + file_size - offset , 0 , 
2365                            offset + CONFIG_PPM_PAGE_SIZE - file_size );
2366                }
2367                else
2368                {
2369                   hal_remote_memset( base_xp + file_size - offset , 0 , 
2370                                      offset + CONFIG_PPM_PAGE_SIZE - file_size );
2371                }
2372            }   
2373
2374        }  // end if CODE or DATA types   
2375    } 
2376
2377    // return ppn
2378    *ppn = ppm_page2ppn( page_xp );
2379
2380#if DEBUG_VMM_GET_ONE_PPN
2381if( DEBUG_VMM_GET_ONE_PPN < cycle )
2382printk("\n[%s] thread[%x,%x] exit for vpn %x / ppn %x / cycle %d\n",
2383__FUNCTION__ , this->process->pid, this->trdid , vpn , *ppn, cycle );
2384#endif
2385
2386#if (DEBUG_VMM_GET_ONE_PPN & 2)
2387if( DEBUG_VMM_GET_ONE_PPN < cycle )
2388hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2389#endif
2390
2391    return 0;
2392
2393}  // end vmm_get_one_ppn()
2394
2395///////////////////////////////////////////////////
2396error_t vmm_handle_page_fault( process_t * process,
2397                               vpn_t       vpn )
2398{
2399    vseg_t         * vseg;            // vseg containing vpn
2400    uint32_t         attr;            // PTE_ATTR value
2401    ppn_t            ppn;             // PTE_PPN value
2402    uint32_t         ref_attr;        // PTE_ATTR value in reference GPT
2403    ppn_t            ref_ppn;         // PTE_PPN value in reference GPT
2404    cxy_t            ref_cxy;         // reference cluster for missing vpn
2405    process_t      * ref_ptr;         // reference process for missing vpn
2406    xptr_t           local_gpt_xp;    // extended pointer on local GPT
2407    xptr_t           ref_gpt_xp;      // extended pointer on reference GPT
2408    error_t          error;           // value returned by called functions
2409
2410    thread_t * this  = CURRENT_THREAD;
2411
2412#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2413uint32_t start_cycle = (uint32_t)hal_get_cycles();
2414#endif
2415
2416#if DEBUG_VMM_HANDLE_PAGE_FAULT
2417if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) & (vpn > 0) )
2418printk("\n[%s] thread[%x,%x] enter for vpn %x / cycle %d\n",
2419__FUNCTION__, this->process->pid, this->trdid, vpn, start_cycle );
2420#endif
2421
2422#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2423if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2424hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2425#endif
2426
2427    // get local vseg (access to reference VSL can be required)
2428    error = vmm_get_vseg( process, 
2429                          (intptr_t)vpn<<CONFIG_PPM_PAGE_SHIFT,
2430                          &vseg );
2431    if( error )
2432    {
2433        printk("\n[ERROR] in %s : vpn %x in thread[%x,%x] not in registered vseg\n",
2434        __FUNCTION__ , vpn , process->pid, this->trdid );
2435       
2436        return EXCP_USER_ERROR;
2437    }
2438
2439#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2440if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2441printk("\n[%s] thread[%x,%x] found vseg %s\n",
2442__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(vseg->type) );
2443#endif
2444
2445    // build extended pointer on local GPT
2446    local_gpt_xp  = XPTR( local_cxy , &process->vmm.gpt );
2447
2448    // lock PTE in local GPT and get current PPN and attributes
2449    error = hal_gpt_lock_pte( local_gpt_xp,
2450                              vpn,
2451                              &attr,
2452                              &ppn );
2453    if( error )
2454    {
2455        printk("\n[PANIC] in %s : cannot lock PTE in local GPT / vpn %x / process %x\n",
2456        __FUNCTION__ , vpn , process->pid );
2457       
2458        return EXCP_KERNEL_PANIC;
2459    }
2460
2461#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2462if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2463printk("\n[%s] thread[%x,%x] locked vpn %x in cluster %x\n",
2464__FUNCTION__, this->process->pid, this->trdid, vpn, local_cxy );
2465#endif
2466
2467    // handle page fault only if local PTE still unmapped after lock
2468    if( (attr & GPT_MAPPED) == 0 )
2469    {
2470        // get reference process cluster and local pointer
2471        ref_cxy = GET_CXY( process->ref_xp );
2472        ref_ptr = GET_PTR( process->ref_xp );
2473
2474        /////////////// private vseg or (local == reference)
2475        /////////////// => access only the local GPT
2476        if( (vseg->type == VSEG_TYPE_STACK) ||
2477            (vseg->type == VSEG_TYPE_CODE)  ||
2478            (ref_cxy    == local_cxy ) )
2479        {
2480
2481#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2482if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2483printk("\n[%s] thread[%x,%x] access local gpt : cxy %x / ref_cxy %x / type %s / cycle %d\n",
2484__FUNCTION__, this->process->pid, this->trdid,
2485local_cxy, ref_cxy, vseg_type_str(vseg->type), (uint32_t)hal_get_cycles() );
2486#endif
2487            // allocate and initialise a physical page
2488            error = vmm_get_one_ppn( vseg , vpn , &ppn );
2489
2490            if( error )
2491            {
2492                printk("\n[ERROR] in %s : no physical page / process = %x / vpn = %x\n",
2493                __FUNCTION__ , process->pid , vpn );
2494
2495                // unlock PTE in local GPT
2496                hal_gpt_unlock_pte( local_gpt_xp , vpn );
2497
2498                return EXCP_KERNEL_PANIC;
2499            }
2500
2501            // define attr from vseg flags
2502            attr = GPT_MAPPED | GPT_SMALL | GPT_READABLE;
2503            if( vseg->flags & VSEG_USER  ) attr |= GPT_USER;
2504            if( vseg->flags & VSEG_WRITE ) attr |= GPT_WRITABLE;
2505            if( vseg->flags & VSEG_EXEC  ) attr |= GPT_EXECUTABLE;
2506            if( vseg->flags & VSEG_CACHE ) attr |= GPT_CACHABLE;
2507
2508            // set PTE to local GPT
2509            // it unlocks this PTE
2510            hal_gpt_set_pte( local_gpt_xp,
2511                             vpn,
2512                             attr,
2513                             ppn );
2514
2515#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2516uint32_t end_cycle = (uint32_t)hal_get_cycles();
2517#endif
2518
2519#if DEBUG_VMM_HANDLE_PAGE_FAULT
2520if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2521printk("\n[%s] thread[%x,%x] handled local pgfault / ppn %x / attr %x / cycle %d\n",
2522__FUNCTION__, this->process->pid, this->trdid, ppn, attr, end_cycle );
2523#endif
2524
2525#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2526if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2527hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2528#endif
2529
2530#if CONFIG_INSTRUMENTATION_PGFAULTS
2531uint32_t cost      = end_cycle - start_cycle;
2532this->info.local_pgfault_nr++;
2533this->info.local_pgfault_cost += cost;
2534if( cost > this->info.local_pgfault_max ) this->info.local_pgfault_max = cost;
2535#endif
2536            return EXCP_NON_FATAL;
2537
2538        }   // end local GPT access
2539
2540        /////////////////// public vseg and (local != reference)
2541        /////////////////// => access ref GPT to update local GPT
2542        else                               
2543        {
2544
2545#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2546if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2547printk("\n[%s] thread[%x,%x] access ref gpt : cxy %x / ref_cxy %x / type %s / cycle %d\n",
2548__FUNCTION__, this->process->pid, this->trdid, 
2549local_cxy, ref_cxy, vseg_type_str(vseg->type), (uint32_t)hal_get_cycles() );
2550#endif
2551            // build extended pointer on reference GPT
2552            ref_gpt_xp = XPTR( ref_cxy , &ref_ptr->vmm.gpt );
2553
2554            // lock PTE in reference GPT and get current PPN and attributes
2555            error = hal_gpt_lock_pte( ref_gpt_xp,
2556                                      vpn,
2557                                      &ref_attr,
2558                                      &ref_ppn );
2559            if( error )
2560            {
2561                printk("\n[PANIC] in %s : cannot lock PTE in ref GPT / vpn %x / process %x\n",
2562                __FUNCTION__ , vpn , process->pid );
2563       
2564                // unlock PTE in local GPT
2565                hal_gpt_unlock_pte( local_gpt_xp , vpn );
2566                   
2567                return EXCP_KERNEL_PANIC;
2568            }
2569
2570#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2571if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2572printk("\n[%s] thread[%x,%x] get pte from ref gpt / attr %x / ppn %x\n",
2573__FUNCTION__, this->process->pid, this->trdid, ref_attr, ref_ppn );
2574#endif
2575
2576            if( ref_attr & GPT_MAPPED )        // false page fault
2577            {
2578                // update local GPT from reference GPT values
2579                // this unlocks the PTE in local GPT
2580                hal_gpt_set_pte( local_gpt_xp,
2581                                 vpn,
2582                                 ref_attr,
2583                                 ref_ppn );
2584
2585#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2586if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2587printk("\n[%s] thread[%x,%x] updated local gpt for a false pgfault\n",
2588__FUNCTION__, this->process->pid, this->trdid );
2589#endif
2590
2591                // unlock the PTE in reference GPT
2592                hal_gpt_unlock_pte( ref_gpt_xp, vpn );
2593                             
2594#if (DEBUG_VMM_HANDLE_PAGE_FAULT &1)
2595if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2596printk("\n[%s] thread[%x,%x] unlock the ref gpt after a false pgfault\n",
2597__FUNCTION__, this->process->pid, this->trdid );
2598#endif
2599
2600#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2601uint32_t end_cycle = (uint32_t)hal_get_cycles();
2602#endif
2603
2604#if DEBUG_VMM_HANDLE_PAGE_FAULT
2605if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2606printk("\n[%s] thread[%x,%x] handled false pgfault / ppn %x / attr %x / cycle %d\n",
2607__FUNCTION__, this->process->pid, this->trdid, ref_ppn, ref_attr, end_cycle );
2608#endif
2609
2610#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2611if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2612hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2613#endif
2614
2615#if CONFIG_INSTRUMENTATION_PGFAULTS
2616uint32_t cost      = end_cycle - start_cycle;
2617this->info.false_pgfault_nr++;
2618this->info.false_pgfault_cost += cost;
2619if( cost > this->info.false_pgfault_max ) this->info.false_pgfault_max = cost;
2620#endif
2621                return EXCP_NON_FATAL;
2622            }
2623            else                            // true page fault
2624            {
2625                // allocate and initialise a physical page depending on the vseg type
2626                error = vmm_get_one_ppn( vseg , vpn , &ppn );
2627
2628                if( error )
2629                {
2630                    printk("\n[ERROR] in %s : no memory / process = %x / vpn = %x\n",
2631                    __FUNCTION__ , process->pid , vpn );
2632
2633                    // unlock PTE in local GPT and in reference GPT
2634                    hal_gpt_unlock_pte( local_gpt_xp , vpn );
2635                    hal_gpt_unlock_pte( ref_gpt_xp   , vpn );
2636                   
2637                    return EXCP_KERNEL_PANIC;
2638                }
2639
2640                // define attr from vseg flags
2641                attr = GPT_MAPPED | GPT_SMALL | GPT_READABLE;
2642                if( vseg->flags & VSEG_USER  ) attr |= GPT_USER;
2643                if( vseg->flags & VSEG_WRITE ) attr |= GPT_WRITABLE;
2644                if( vseg->flags & VSEG_EXEC  ) attr |= GPT_EXECUTABLE;
2645                if( vseg->flags & VSEG_CACHE ) attr |= GPT_CACHABLE;
2646
2647#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2648if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2649printk("\n[%s] thread[%x,%x] build a new PTE for a true pgfault\n",
2650__FUNCTION__, this->process->pid, this->trdid );
2651#endif
2652                // set PTE in reference GPT
2653                // this unlock the PTE
2654                hal_gpt_set_pte( ref_gpt_xp,
2655                                 vpn,
2656                                 attr,
2657                                 ppn );
2658
2659#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2660if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2661printk("\n[%s] thread[%x,%x] set new PTE in ref gpt for a true page fault\n",
2662__FUNCTION__, this->process->pid, this->trdid );
2663#endif
2664
2665                // set PTE in local GPT
2666                // this unlock the PTE
2667                hal_gpt_set_pte( local_gpt_xp,
2668                                 vpn,
2669                                 attr,
2670                                 ppn );
2671
2672#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2673uint32_t end_cycle = (uint32_t)hal_get_cycles();
2674#endif
2675
2676#if DEBUG_VMM_HANDLE_PAGE_FAULT
2677if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2678printk("\n[%s] thread[%x,%x] handled global pgfault / ppn %x / attr %x / cycle %d\n",
2679__FUNCTION__, this->process->pid, this->trdid, ppn, attr, end_cycle );
2680#endif
2681
2682#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2683if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2684hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2685#endif
2686
2687#if CONFIG_INSTRUMENTATION_PGFAULTS
2688uint32_t cost      = end_cycle - start_cycle;
2689this->info.global_pgfault_nr++;
2690this->info.global_pgfault_cost += cost;
2691if( cost > this->info.global_pgfault_max ) this->info.global_pgfault_max = cost;
2692#endif
2693                return EXCP_NON_FATAL;
2694            }
2695        }
2696    }
2697    else   // page has been locally mapped by another concurrent thread
2698    {
2699        // unlock the PTE in local GPT
2700        hal_gpt_unlock_pte( local_gpt_xp , vpn );
2701
2702#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2703uint32_t end_cycle = (uint32_t)hal_get_cycles();
2704#endif
2705
2706#if DEBUG_VMM_HANDLE_PAGE_FAULT
2707if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2708printk("\n[%s] handled by another thread / vpn %x / ppn %x / attr %x / cycle %d\n",
2709__FUNCTION__, vpn, ppn, attr, end_cycle );
2710#endif
2711
2712#if CONFIG_INSTRUMENTATION_PGFAULTS
2713uint32_t cost      = end_cycle - start_cycle;
2714this->info.false_pgfault_nr++;
2715this->info.false_pgfault_cost += cost;
2716if( cost > this->info.false_pgfault_max ) this->info.false_pgfault_max = cost;
2717#endif
2718        return EXCP_NON_FATAL;
2719    }
2720
2721}   // end vmm_handle_page_fault()
2722
2723////////////////////////////////////////////
2724error_t vmm_handle_cow( process_t * process,
2725                        vpn_t       vpn )
2726{
2727    vseg_t         * vseg;            // vseg containing vpn
2728    xptr_t           gpt_xp;          // extended pointer on GPT (local or reference)
2729    gpt_t          * gpt_ptr;         // local pointer on GPT (local or reference)
2730    cxy_t            gpt_cxy;         // GPT cluster identifier
2731    uint32_t         old_attr;        // current PTE_ATTR value
2732    ppn_t            old_ppn;         // current PTE_PPN value
2733    uint32_t         new_attr;        // new PTE_ATTR value
2734    ppn_t            new_ppn;         // new PTE_PPN value
2735    cxy_t            ref_cxy;         // reference process cluster
2736    process_t      * ref_ptr;         // local pointer on reference process
2737    error_t          error;
2738
2739    thread_t * this  = CURRENT_THREAD;
2740
2741#if DEBUG_VMM_HANDLE_COW
2742uint32_t   cycle = (uint32_t)hal_get_cycles();
2743if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2744printk("\n[%s] thread[%x,%x] enter for vpn %x / core[%x,%d] / cycle %d\n",
2745__FUNCTION__, this->process->pid, this->trdid, vpn, local_cxy, this->core->lid, cycle );
2746#endif
2747
2748#if (DEBUG_VMM_HANDLE_COW & 2)
2749hal_vmm_display( XPTR( local_cxy , process ) , true );
2750#endif
2751
2752    // get local vseg
2753    error = vmm_get_vseg( process, 
2754                          (intptr_t)vpn<<CONFIG_PPM_PAGE_SHIFT,
2755                          &vseg );
2756    if( error )
2757    {
2758        printk("\n[ERROR] in %s : vpn %x in thread[%x,%x] not in a registered vseg\n",
2759        __FUNCTION__, vpn, process->pid, this->trdid );
2760
2761        return EXCP_USER_ERROR;
2762    }
2763
2764#if DEBUG_VMM_HANDLE_COW
2765if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2766printk("\n[%s] thread[%x,%x] get vseg %s\n",
2767__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(vseg->type) );
2768#endif
2769
2770    // get reference process cluster and local pointer
2771    ref_cxy = GET_CXY( process->ref_xp );
2772    ref_ptr = GET_PTR( process->ref_xp );
2773
2774    // build pointers on relevant GPT
2775    // - access only local GPT for a private vseg 
2776    // - access reference GPT and all copies for a public vseg
2777    if( (vseg->type == VSEG_TYPE_STACK) || (vseg->type == VSEG_TYPE_CODE) )
2778    {
2779        gpt_cxy = local_cxy;
2780        gpt_ptr = &process->vmm.gpt;
2781        gpt_xp  = XPTR( gpt_cxy , gpt_ptr );
2782    }
2783    else
2784    {
2785        gpt_cxy = ref_cxy;
2786        gpt_ptr = &ref_ptr->vmm.gpt;
2787        gpt_xp  = XPTR( gpt_cxy , gpt_ptr );
2788    }
2789
2790    // lock target PTE in relevant GPT (local or reference)
2791    // and get current PTE value
2792    error = hal_gpt_lock_pte( gpt_xp,
2793                              vpn,
2794                              &old_attr,
2795                              &old_ppn );
2796    if( error )
2797    {
2798        printk("\n[PANIC] in %s : cannot lock PTE in GPT / cxy %x / vpn %x / process %x\n",
2799        __FUNCTION__ , gpt_cxy, vpn , process->pid );
2800       
2801        return EXCP_KERNEL_PANIC;
2802    }
2803
2804#if DEBUG_VMM_HANDLE_COW
2805if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2806printk("\n[%s] thread[%x,%x] get pte for vpn %x : ppn %x / attr %x\n",
2807__FUNCTION__, this->process->pid, this->trdid, vpn, old_ppn, old_attr );
2808#endif
2809
2810    // return user error if COW attribute not set or PTE2 unmapped
2811    if( ((old_attr & GPT_COW) == 0) || ((old_attr & GPT_MAPPED) == 0) )
2812    {
2813        hal_gpt_unlock_pte( gpt_xp , vpn );
2814
2815        return EXCP_USER_ERROR;
2816    }
2817
2818    // get pointers on physical page descriptor
2819    xptr_t   page_xp  = ppm_ppn2page( old_ppn );
2820    cxy_t    page_cxy = GET_CXY( page_xp );
2821    page_t * page_ptr = GET_PTR( page_xp );
2822
2823    // get extended pointers on forks and lock field in page descriptor
2824    xptr_t forks_xp       = XPTR( page_cxy , &page_ptr->forks );
2825    xptr_t forks_lock_xp  = XPTR( page_cxy , &page_ptr->lock );
2826
2827    // take lock protecting "forks" counter
2828    remote_busylock_acquire( forks_lock_xp );
2829
2830    // get number of pending forks from page descriptor
2831    uint32_t forks = hal_remote_l32( forks_xp );
2832
2833#if DEBUG_VMM_HANDLE_COW
2834if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2835printk("\n[%s] thread[%x,%x] get forks = %d for vpn %x\n",
2836__FUNCTION__, this->process->pid, this->trdid, forks, vpn );
2837#endif
2838
2839    if( forks )        // pending fork => allocate a new page, and copy old to new
2840    {
2841        // decrement pending forks counter in page descriptor
2842        hal_remote_atomic_add( forks_xp , -1 );
2843
2844        // release lock protecting "forks" counter
2845        remote_busylock_release( forks_lock_xp );
2846
2847        // allocate a new physical page depending on vseg type
2848        page_xp = vmm_page_allocate( vseg , vpn );
2849
2850        if( page_xp == XPTR_NULL ) 
2851        {
2852            printk("\n[PANIC] in %s : no memory for vpn %x in process %x\n",
2853            __FUNCTION__ , vpn, process->pid );
2854
2855            hal_gpt_unlock_pte( gpt_xp , vpn ); 
2856
2857            return EXCP_KERNEL_PANIC;
2858        }
2859
2860        // compute allocated page PPN
2861        new_ppn = ppm_page2ppn( page_xp );
2862
2863#if DEBUG_VMM_HANDLE_COW
2864if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2865printk("\n[%s] thread[%x,%x] get new ppn %x for vpn %x\n",
2866__FUNCTION__, this->process->pid, this->trdid, new_ppn, vpn );
2867#endif
2868
2869        // copy old page content to new page
2870        hal_remote_memcpy( ppm_ppn2base( new_ppn ),
2871                           ppm_ppn2base( old_ppn ),
2872                           CONFIG_PPM_PAGE_SIZE );
2873
2874#if DEBUG_VMM_HANDLE_COW
2875if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2876printk("\n[%s] thread[%x,%x] copied old page to new page\n",
2877__FUNCTION__, this->process->pid, this->trdid );
2878#endif
2879
2880    }             
2881    else               // no pending fork => keep the existing page
2882    {
2883        // release lock protecting "forks" counter
2884        remote_busylock_release( forks_lock_xp );
2885
2886#if(DEBUG_VMM_HANDLE_COW & 1)
2887if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2888printk("\n[%s] thread[%x,%x] no pending forks / keep existing PPN %x\n",
2889__FUNCTION__, this->process->pid, this->trdid, old_ppn );
2890#endif
2891        new_ppn = old_ppn;
2892    }
2893
2894    // build new_attr : set WRITABLE, reset COW, reset LOCKED
2895    new_attr = (((old_attr | GPT_WRITABLE) & (~GPT_COW)) & (~GPT_LOCKED));
2896
2897#if(DEBUG_VMM_HANDLE_COW & 1)
2898if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2899printk("\n[%s] thread[%x,%x] new_attr %x / new_ppn %x\n",
2900__FUNCTION__, this->process->pid, this->trdid, new_attr, new_ppn );
2901#endif
2902
2903    // update the relevant GPT(s)
2904    // - private vseg => update only the local GPT
2905    // - public vseg => update the reference GPT AND all the GPT copies
2906    if( (vseg->type == VSEG_TYPE_STACK) || (vseg->type == VSEG_TYPE_CODE) )
2907    {
2908        // set new PTE in local gpt
2909        hal_gpt_set_pte( gpt_xp,
2910                         vpn,
2911                         new_attr,
2912                         new_ppn );
2913    }
2914    else
2915    {
2916        // set new PTE in all GPT copies
2917        vmm_global_update_pte( process,
2918                               vpn,
2919                               new_attr,
2920                               new_ppn );
2921    }
2922
2923#if DEBUG_VMM_HANDLE_COW
2924cycle = (uint32_t)hal_get_cycles();
2925if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2926printk("\n[%s] thread[%x,%x] exit for vpn %x / core[%x,%d] / cycle %d\n",
2927__FUNCTION__, this->process->pid, this->trdid, vpn, local_cxy, this->core->lid, cycle );
2928#endif
2929
2930#if (DEBUG_VMM_HANDLE_COW & 2)
2931hal_vmm_display( XPTR( local_cxy , process ) , true );
2932#endif
2933
2934     return EXCP_NON_FATAL;
2935
2936}   // end vmm_handle_cow()
2937
Note: See TracBrowser for help on using the repository browser.