[1] | 1 | /* |
---|
| 2 | * fatfs.c - FATFS file system API implementation. |
---|
| 3 | * |
---|
[23] | 4 | * Author Mohamed Lamine Karaoui (2014,2015) |
---|
| 5 | * Alain Greiner (2016,2017) |
---|
[1] | 6 | * |
---|
| 7 | * Copyright (c) UPMC Sorbonne Universites |
---|
| 8 | * |
---|
| 9 | * This file is part of ALMOS-MKH. |
---|
| 10 | * |
---|
| 11 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation; version 2.0 of the License. |
---|
| 14 | * |
---|
| 15 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
| 16 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 18 | * General Public License for more details. |
---|
| 19 | * |
---|
| 20 | * You should have received a copy of the GNU General Public License |
---|
| 21 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
| 22 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 23 | */ |
---|
| 24 | |
---|
| 25 | |
---|
| 26 | #include <hal_types.h> |
---|
| 27 | #include <hal_special.h> |
---|
| 28 | #include <printk.h> |
---|
| 29 | #include <kmem.h> |
---|
| 30 | #include <ppm.h> |
---|
| 31 | #include <vfs.h> |
---|
| 32 | #include <rpc.h> |
---|
| 33 | #include <mapper.h> |
---|
[23] | 34 | #include <cluster.h> |
---|
[1] | 35 | #include <dev_ioc.h> |
---|
| 36 | #include <fatfs.h> |
---|
| 37 | |
---|
[50] | 38 | |
---|
[23] | 39 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 40 | // Extern variables |
---|
| 41 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
[1] | 42 | |
---|
[50] | 43 | extern vfs_ctx_t fs_context[FS_TYPES_NR]; // allocated in vfs.c file |
---|
[23] | 44 | |
---|
[50] | 45 | extern remote_barrier_t global_barrier; // allocated in kernel_init.c |
---|
[23] | 46 | |
---|
[1] | 47 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 48 | // FATFS specific functions : these functions cannot be called by the VFS |
---|
| 49 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 50 | |
---|
| 51 | ////////////////////////////////////////////////////////// |
---|
| 52 | inline uint32_t fatfs_lba_from_cluster( fatfs_ctx_t * ctx, |
---|
| 53 | uint32_t cluster ) |
---|
| 54 | { |
---|
[23] | 55 | return (ctx->cluster_begin_lba + ((cluster - 2) << 3)); |
---|
[1] | 56 | } |
---|
| 57 | |
---|
| 58 | ///////////////////////////////////////////// |
---|
| 59 | error_t fatfs_get_cluster( mapper_t * mapper, |
---|
| 60 | uint32_t first_cluster, |
---|
| 61 | uint32_t searched_page, |
---|
| 62 | uint32_t * cluster ) |
---|
| 63 | { |
---|
| 64 | page_t * current_page_desc; // pointer on current page descriptor |
---|
| 65 | uint32_t * current_page_buffer; // pointer on current page (array of uint32_t) |
---|
| 66 | uint32_t current_page_index; // index of current page in mapper |
---|
| 67 | uint32_t current_page_offset; // offset of slot in current page |
---|
| 68 | uint32_t page_count_in_file; // index of page in file (index in linked list) |
---|
| 69 | uint32_t current_cluster; // content of current FAT slot |
---|
| 70 | |
---|
| 71 | // compute number of FAT slots per PPM page |
---|
| 72 | uint32_t slots_per_page = CONFIG_PPM_PAGE_SIZE >> 2; |
---|
| 73 | |
---|
| 74 | // initialize loop variable |
---|
| 75 | current_page_index = first_cluster / slots_per_page; |
---|
| 76 | current_page_offset = first_cluster % slots_per_page; |
---|
| 77 | page_count_in_file = 0; |
---|
| 78 | |
---|
| 79 | // scan FAT (i.e. traverse FAT linked list) |
---|
| 80 | while( page_count_in_file <= searched_page ) |
---|
| 81 | { |
---|
| 82 | // get pointer on current page descriptor |
---|
| 83 | current_page_desc = mapper_get_page( mapper , current_page_index ); |
---|
| 84 | |
---|
| 85 | if( current_page_desc == NULL ) return EIO; |
---|
| 86 | |
---|
| 87 | // get pointer on buffer for current page |
---|
[53] | 88 | current_page_buffer = (uint32_t *)ppm_page2vaddr( current_page_desc ); |
---|
[1] | 89 | |
---|
| 90 | // get FAT slot content |
---|
| 91 | current_cluster = current_page_buffer[current_page_offset]; |
---|
| 92 | |
---|
| 93 | // update loop variables |
---|
| 94 | current_page_index = current_cluster / slots_per_page; |
---|
| 95 | current_page_offset = current_cluster % slots_per_page; |
---|
| 96 | page_count_in_file++; |
---|
| 97 | } |
---|
| 98 | |
---|
| 99 | // return success |
---|
| 100 | *cluster = current_cluster; |
---|
| 101 | return 0; |
---|
| 102 | |
---|
| 103 | } // end fatfs_get_cluster() |
---|
| 104 | |
---|
[23] | 105 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 106 | // This static function return an integer record value (one, two, or four bytes) |
---|
| 107 | // from a memory buffer, taking into account endianness. |
---|
| 108 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 109 | // @ offset : first byte of record in buffer. |
---|
| 110 | // @ size : record length in bytes (1/2/4). |
---|
| 111 | // @ buffer : pointer on buffer base. |
---|
| 112 | // @ little endian : the most significant byte has the highest address when true. |
---|
| 113 | // @ return the integer value in a 32 bits word. |
---|
| 114 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 115 | static uint32_t get_record_from_buffer( uint32_t offset, |
---|
| 116 | uint32_t size, |
---|
| 117 | uint8_t * buffer, |
---|
| 118 | uint32_t little_endian ) |
---|
| 119 | { |
---|
| 120 | uint32_t n; |
---|
| 121 | uint32_t res = 0; |
---|
[1] | 122 | |
---|
[23] | 123 | if ( little_endian) |
---|
| 124 | { |
---|
| 125 | for( n = size ; n > 0 ; n-- ) res = (res<<8) | buffer[offset+n-1]; |
---|
| 126 | } |
---|
| 127 | else |
---|
| 128 | { |
---|
| 129 | for( n = 0 ; n < size ; n++ ) res = (res<<8) | buffer[offset+n]; |
---|
| 130 | } |
---|
| 131 | return res; |
---|
| 132 | |
---|
| 133 | } // end get_record_from_buffer() |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | |
---|
[1] | 137 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 138 | // This function returns the FATFS cluster index of a page identified by its page |
---|
| 139 | // index in the file, using the FAT mapper. It scans the FAT mapper, starting from the |
---|
| 140 | // FATFS cluster index allocated to the first page of the file, until it reaches the |
---|
| 141 | // searched page. The FAT mapper is automatically updated in case of miss. |
---|
| 142 | // This function can be called by any thread running in any cluster, as it uses the |
---|
| 143 | // RPC_FATFS_GET_CLUSTER to access the remote FAT mapper if required. |
---|
| 144 | // We use a RPC to scan the FAT because the RPC_FIFO will avoid contention |
---|
| 145 | // in the cluster containing the FAT mapper, and the RPC latency is not critical |
---|
| 146 | // compared to the device access latency. |
---|
| 147 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 148 | // @ ctx : pointer on local FATFS context. |
---|
| 149 | // @ first_cluster : first cluster allocated to a file in FATFS. |
---|
| 150 | // @ page_index : index of searched page in file (one page occupies one cluster). |
---|
| 151 | // @ cluster_index : [out] pointer on buffer for FATFS cluster index. |
---|
| 152 | // @ return 0 if success / return EIO if a FAT cluster miss cannot be solved. |
---|
| 153 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 154 | static error_t fatfs_cluster_from_index( fatfs_ctx_t * ctx, |
---|
| 155 | uint32_t first_cluster, |
---|
| 156 | uint32_t page_index, |
---|
| 157 | uint32_t * cluster_index ) |
---|
| 158 | { |
---|
| 159 | uint32_t searched_cluster; // searched FATFS cluster index |
---|
| 160 | error_t error; |
---|
| 161 | |
---|
| 162 | // get extended pointer on FAT mapper |
---|
| 163 | xptr_t fat_mapper_xp = ctx->fat_mapper_xp; |
---|
| 164 | |
---|
| 165 | // get cluster cxy and local pointer on FAT mapper |
---|
| 166 | cxy_t fat_mapper_cxy = GET_CXY( fat_mapper_xp ); |
---|
| 167 | mapper_t * fat_mapper_ptr = (mapper_t *)GET_PTR( fat_mapper_xp ); |
---|
| 168 | |
---|
| 169 | if( fat_mapper_cxy == local_cxy ) // FAT mapper is local |
---|
| 170 | { |
---|
| 171 | error = fatfs_get_cluster( fat_mapper_ptr, |
---|
| 172 | first_cluster, |
---|
| 173 | page_index, |
---|
| 174 | &searched_cluster ); |
---|
| 175 | } |
---|
| 176 | else // FAT mapper is remote |
---|
| 177 | { |
---|
| 178 | rpc_fatfs_get_cluster_client( fat_mapper_cxy, |
---|
| 179 | fat_mapper_ptr, |
---|
| 180 | first_cluster, |
---|
| 181 | page_index, |
---|
| 182 | &searched_cluster, |
---|
| 183 | &error ); |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | if( error ) |
---|
| 187 | { |
---|
| 188 | printk("\n[ERROR] in %s : cannot access FAT\n", __FUNCTION__ ); |
---|
| 189 | return error; |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | // return success |
---|
| 193 | *cluster_index = searched_cluster; |
---|
| 194 | return 0; |
---|
| 195 | |
---|
| 196 | } // end fatfs_cluster_from_index() |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
[23] | 202 | // The following functions are called by the VFS. |
---|
[1] | 203 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 204 | |
---|
[23] | 205 | |
---|
| 206 | /////////////////// |
---|
| 207 | xptr_t fatfs_init() |
---|
[1] | 208 | { |
---|
[23] | 209 | kmem_req_t req; |
---|
| 210 | fatfs_ctx_t * fatfs_ctx; // local pointer on FATFS context |
---|
| 211 | vfs_ctx_t * vfs_ctx; // local pointer on VFS context |
---|
| 212 | xptr_t root_inode_xp; // extended pointer on root inode |
---|
| 213 | error_t error; |
---|
[1] | 214 | |
---|
[23] | 215 | // get local pointer on VFS context for FATFS |
---|
| 216 | vfs_ctx = &fs_context[FS_TYPE_FATFS]; |
---|
| 217 | |
---|
| 218 | // get number of kernel instances and extended pointer on global barrier |
---|
| 219 | cluster_t * cluster = LOCAL_CLUSTER; |
---|
| 220 | uint32_t nb_clusters = cluster->x_size * cluster->y_size; |
---|
| 221 | xptr_t barrier_xp = XPTR( cluster->io_cxy , &global_barrier ); |
---|
| 222 | |
---|
| 223 | ///// step 1 : all clusters allocate memory for FATFS context |
---|
| 224 | |
---|
| 225 | // allocate memory for FATFS context extension |
---|
| 226 | req.type = KMEM_FATFS_CTX; |
---|
| 227 | req.size = sizeof(fatfs_ctx_t); |
---|
| 228 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 229 | fatfs_ctx = (fatfs_ctx_t *)kmem_alloc( &req ); |
---|
| 230 | |
---|
| 231 | if( fatfs_ctx == NULL ) |
---|
| 232 | { |
---|
| 233 | printk("\n[PANIC] in %s : no memory for FATFS context\n", __FUNCTION__ ); |
---|
| 234 | hal_core_sleep(); |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | ///// step 2 : only cluster_0 access device and creates root inode |
---|
| 238 | |
---|
| 239 | if( local_cxy == 0 ) |
---|
| 240 | { |
---|
| 241 | // create VFS root inode |
---|
| 242 | error = vfs_inode_create( XPTR_NULL, // no parent dentry |
---|
| 243 | FS_TYPE_FATFS, |
---|
| 244 | INODE_TYPE_DIR, |
---|
| 245 | 0, // attr |
---|
| 246 | 0, // rights |
---|
| 247 | 0, // uid |
---|
| 248 | 0, // gid |
---|
| 249 | &root_inode_xp ); |
---|
| 250 | |
---|
| 251 | assert( (error == 0 ) , __FUNCTION__ , "cannot create VFS root inode" ); |
---|
| 252 | |
---|
| 253 | // initialize VFS context / access device to initialize FATFS context |
---|
| 254 | error = fatfs_ctx_init( vfs_ctx, |
---|
| 255 | fatfs_ctx, |
---|
| 256 | root_inode_xp ); |
---|
| 257 | |
---|
| 258 | // create FATFS root inode |
---|
| 259 | error = fatfs_inode_create( GET_PTR( root_inode_xp ) , |
---|
| 260 | fatfs_ctx->root_dir_cluster ); |
---|
| 261 | |
---|
| 262 | if( error ) |
---|
| 263 | { |
---|
| 264 | printk("\n[PANIC] in %s : cannot create FATFS root inode\n", __FUNCTION__ ); |
---|
| 265 | hal_core_sleep(); |
---|
| 266 | } |
---|
| 267 | |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | //////////////// synchronize all clusters |
---|
| 271 | remote_barrier( barrier_xp , nb_clusters ); |
---|
| 272 | |
---|
| 273 | ///// step 3 : all others clusters initialize both context and extension |
---|
| 274 | |
---|
| 275 | if( local_cxy != 0 ) |
---|
| 276 | { |
---|
| 277 | // copy VFS context from remote cluster_0 to local cluster |
---|
| 278 | hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), |
---|
| 279 | XPTR( 0 , vfs_ctx ), |
---|
| 280 | sizeof(vfs_ctx_t) ); |
---|
| 281 | |
---|
| 282 | // copy FATFS context from remote cluster_0 to local cluster |
---|
| 283 | hal_remote_memcpy( XPTR( local_cxy , fatfs_ctx ), |
---|
| 284 | XPTR( 0 , vfs_ctx->extend ) , |
---|
| 285 | sizeof(fatfs_ctx_t) ); |
---|
| 286 | |
---|
| 287 | // update extend field in local copy of VFS context |
---|
| 288 | vfs_ctx->extend = fatfs_ctx; |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | return root_inode_xp; |
---|
| 292 | |
---|
| 293 | } // end fatfs_init() |
---|
| 294 | |
---|
| 295 | ////////////////////////////////////////////// |
---|
| 296 | error_t fatfs_ctx_init( vfs_ctx_t * vfs_ctx, |
---|
| 297 | fatfs_ctx_t * fatfs_ctx, |
---|
| 298 | xptr_t root_inode_xp ) |
---|
| 299 | { |
---|
[50] | 300 | error_t error; |
---|
| 301 | uint8_t * buffer; |
---|
| 302 | kmem_req_t req; |
---|
[23] | 303 | |
---|
[50] | 304 | // allocate a 512 bytes buffer to store the boot record |
---|
| 305 | req.type = KMEM_512_BYTES; |
---|
| 306 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 307 | buffer = (uint8_t *)kmem_alloc( &req ); |
---|
| 308 | |
---|
| 309 | fatfs_dmsg("\n[INFO] %s : enters with buffer = %x\n", |
---|
| 310 | __FUNCTION__ , (intptr_t)buffer ); |
---|
| 311 | |
---|
| 312 | // load the boot record from device |
---|
| 313 | // using a synchronous access to IOC device |
---|
[23] | 314 | error = dev_ioc_sync_read( buffer , 0 , 1 ); |
---|
| 315 | |
---|
[50] | 316 | assert( (error == 0) , __FUNCTION__ , "cannot access boot record" ); |
---|
| 317 | |
---|
| 318 | #if CONFIG_FAT_DEBUG |
---|
| 319 | uint32_t line; |
---|
| 320 | uint32_t byte = 0; |
---|
| 321 | printk("\n*** boot record at cycle %d ***\n", hal_time_stamp() ); |
---|
| 322 | for ( line = 0 ; line < 32 ; line++ ) |
---|
| 323 | { |
---|
| 324 | printk(" %X | %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x |\n", |
---|
| 325 | byte, |
---|
| 326 | buffer[byte+ 0],buffer[byte+ 1],buffer[byte+ 2],buffer[byte+ 3], |
---|
| 327 | buffer[byte+ 4],buffer[byte+ 5],buffer[byte+ 6],buffer[byte+ 7], |
---|
| 328 | buffer[byte+ 8],buffer[byte+ 9],buffer[byte+10],buffer[byte+11], |
---|
| 329 | buffer[byte+12],buffer[byte+13],buffer[byte+14],buffer[byte+15] ); |
---|
| 330 | |
---|
| 331 | byte += 16; |
---|
| 332 | } |
---|
| 333 | #endif |
---|
| 334 | |
---|
[23] | 335 | // check sector size from boot record |
---|
| 336 | uint32_t sector_size = get_record_from_buffer( BPB_BYTSPERSEC , buffer , 1 ); |
---|
[50] | 337 | |
---|
[23] | 338 | assert( (sector_size == 512) , __FUNCTION__ , "sector size must be 512 bytes" ); |
---|
| 339 | |
---|
| 340 | // check cluster size from boot record |
---|
| 341 | uint32_t nb_sectors = get_record_from_buffer( BPB_SECPERCLUS , buffer , 1 ); |
---|
[50] | 342 | |
---|
[23] | 343 | assert( (nb_sectors == 8) , __FUNCTION__ , "cluster size must be 8 sectors" ); |
---|
| 344 | |
---|
| 345 | // check number of FAT copies from boot record |
---|
| 346 | uint32_t nb_fats = get_record_from_buffer( BPB_NUMFATS , buffer , 1 ); |
---|
[50] | 347 | |
---|
[23] | 348 | assert( (nb_fats == 1) , __FUNCTION__ , "number of FAT copies must be 1" ); |
---|
| 349 | |
---|
| 350 | // get & check number of sectors in FAT from boot record |
---|
| 351 | uint32_t fat_sectors = get_record_from_buffer( BPB_FAT32_FATSZ32 , buffer , 1 ); |
---|
[50] | 352 | |
---|
[23] | 353 | assert( ((fat_sectors & 0xF) == 0) , __FUNCTION__ , "FAT not multiple of 16 sectors"); |
---|
| 354 | |
---|
| 355 | // get and check root cluster from boot record |
---|
| 356 | uint32_t root_cluster = get_record_from_buffer( BPB_FAT32_ROOTCLUS , buffer , 1 ); |
---|
[50] | 357 | |
---|
[23] | 358 | assert( (root_cluster == 2) , __FUNCTION__ , "Root cluster index must be 2"); |
---|
| 359 | |
---|
| 360 | // get FAT lba from boot record |
---|
| 361 | uint32_t fat_lba = get_record_from_buffer( BPB_RSVDSECCNT , buffer , 1 ); |
---|
[50] | 362 | |
---|
| 363 | // release the 512 bytes buffer |
---|
| 364 | req.type = KMEM_512_BYTES; |
---|
| 365 | req.ptr = buffer; |
---|
| 366 | kmem_free( &req ); |
---|
| 367 | |
---|
[23] | 368 | // allocate a mapper for the FAT itself |
---|
| 369 | mapper_t * fat_mapper = mapper_create(); |
---|
[50] | 370 | |
---|
[23] | 371 | assert( (fat_mapper != NULL) , __FUNCTION__ , "no memory for FAT mapper" ); |
---|
| 372 | |
---|
| 373 | // initialize the FATFS context |
---|
| 374 | fatfs_ctx->fat_begin_lba = fat_lba; |
---|
| 375 | fatfs_ctx->fat_sectors_count = fat_sectors; |
---|
| 376 | fatfs_ctx->bytes_per_sector = sector_size; |
---|
| 377 | fatfs_ctx->bytes_per_cluster = sector_size * nb_sectors; |
---|
| 378 | fatfs_ctx->cluster_begin_lba = fat_lba + fat_sectors; |
---|
| 379 | fatfs_ctx->root_dir_cluster = 2; |
---|
| 380 | fatfs_ctx->last_allocated_sector = 0; // TODO ??? |
---|
| 381 | fatfs_ctx->last_allocated_index = 0; // TODO ??? |
---|
| 382 | fatfs_ctx->fat_mapper_xp = XPTR( local_cxy , fat_mapper ); |
---|
| 383 | |
---|
[50] | 384 | fatfs_dmsg("\n*** FAT context ***\n" |
---|
| 385 | "- fat_sectors = %d\n" |
---|
| 386 | "- sector size = %d\n" |
---|
| 387 | "- cluster size = %d\n" |
---|
| 388 | "- fat_first_lba = %d\n" |
---|
| 389 | "- data_first_lba = %d\n" |
---|
| 390 | "- mapper = %l\n", |
---|
| 391 | fatfs_ctx->fat_sectors_count, |
---|
| 392 | fatfs_ctx->bytes_per_sector, |
---|
| 393 | fatfs_ctx->bytes_per_cluster, |
---|
| 394 | fatfs_ctx->fat_begin_lba, |
---|
| 395 | fatfs_ctx->cluster_begin_lba, |
---|
| 396 | fatfs_ctx->fat_mapper_xp ); |
---|
| 397 | |
---|
[23] | 398 | // initialize the VFS context |
---|
| 399 | vfs_ctx->type = FS_TYPE_FATFS; |
---|
| 400 | vfs_ctx->attr = 0; // not READ_ONLY / not SYNC |
---|
| 401 | vfs_ctx->count = fat_sectors << 10; // total number of sectors in data region |
---|
| 402 | vfs_ctx->blksize = 512; // number of bytes per sector |
---|
| 403 | vfs_ctx->root_xp = root_inode_xp; |
---|
| 404 | vfs_ctx->extend = fatfs_ctx; |
---|
| 405 | |
---|
| 406 | spinlock_init( &vfs_ctx->lock ); |
---|
| 407 | |
---|
| 408 | bitmap_init( vfs_ctx->bitmap , CONFIG_VFS_MAX_INODES ); |
---|
| 409 | |
---|
| 410 | return 0; |
---|
| 411 | |
---|
| 412 | } // end fatfs_ctx_init() |
---|
| 413 | |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | //////////////////////////////////////////////////// |
---|
| 417 | void fatfs_ctx_destroy( struct vfs_ctx_s * vfs_ctx ) |
---|
| 418 | { |
---|
| 419 | kmem_req_t req; |
---|
| 420 | fatfs_ctx_t * fatfs_ctx; |
---|
| 421 | |
---|
| 422 | // get pointer on FATFS context extension |
---|
| 423 | fatfs_ctx = (fatfs_ctx_t *)vfs_ctx->extend; |
---|
| 424 | |
---|
| 425 | req.type = KMEM_FATFS_INODE; |
---|
| 426 | req.ptr = fatfs_ctx; |
---|
| 427 | kmem_free( &req ); |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | //////////////////////////////////////////////////// |
---|
| 432 | error_t fatfs_inode_create( vfs_inode_t * vfs_inode, |
---|
| 433 | uint32_t first_cluster ) |
---|
| 434 | { |
---|
[1] | 435 | kmem_req_t req; |
---|
| 436 | fatfs_inode_t * fatfs_inode; |
---|
| 437 | |
---|
[23] | 438 | // allocate memory for FATFS inode extension |
---|
[1] | 439 | req.type = KMEM_FATFS_INODE; |
---|
| 440 | req.size = sizeof(fatfs_inode_t); |
---|
| 441 | req.flags = AF_KERNEL | AF_ZERO; |
---|
| 442 | fatfs_inode = (fatfs_inode_t *)kmem_alloc( &req ); |
---|
| 443 | |
---|
| 444 | if( fatfs_inode == NULL ) return ENOMEM; |
---|
| 445 | |
---|
[23] | 446 | // link FATFS inode to VFS inode |
---|
[1] | 447 | vfs_inode->extend = fatfs_inode; |
---|
| 448 | |
---|
[23] | 449 | // initialise FATFS inode |
---|
| 450 | fatfs_inode->first_cluster = first_cluster; |
---|
| 451 | |
---|
[1] | 452 | return 0; |
---|
| 453 | } |
---|
| 454 | |
---|
[23] | 455 | /////////////////////////////////////////////////// |
---|
| 456 | void fatfs_inode_destroy( vfs_inode_t * vfs_inode ) |
---|
[1] | 457 | { |
---|
[23] | 458 | kmem_req_t req; |
---|
| 459 | fatfs_inode_t * fatfs_inode; |
---|
[1] | 460 | |
---|
[23] | 461 | // get pointer on FATFS inode |
---|
| 462 | fatfs_inode = (fatfs_inode_t *)vfs_inode->extend; |
---|
[1] | 463 | |
---|
[23] | 464 | req.type = KMEM_FATFS_INODE; |
---|
| 465 | req.ptr = fatfs_inode; |
---|
| 466 | kmem_free( &req ); |
---|
[1] | 467 | |
---|
[23] | 468 | vfs_inode->extend = NULL; |
---|
[1] | 469 | } |
---|
| 470 | |
---|
[23] | 471 | |
---|
[1] | 472 | //////////////////////////////////////////////// |
---|
| 473 | static error_t fatfs_access_page( page_t * page, |
---|
| 474 | bool_t is_read ) |
---|
| 475 | { |
---|
[23] | 476 | // get memory buffer base address |
---|
[53] | 477 | uint8_t * buffer = (uint8_t *)ppm_page2vaddr( page ); |
---|
[1] | 478 | |
---|
| 479 | // get pointer on source mapper and page index from page descriptor |
---|
[23] | 480 | mapper_t * mapper = page->mapper; |
---|
[1] | 481 | uint32_t page_index = page->index; |
---|
| 482 | |
---|
| 483 | // get VFS inode pointer from mapper |
---|
[23] | 484 | vfs_inode_t * vfs_inode = mapper->inode; |
---|
[1] | 485 | |
---|
| 486 | // get FATFS inode pointer for VFS inode |
---|
| 487 | fatfs_inode_t * fatfs_inode = (fatfs_inode_t *)vfs_inode->extend; |
---|
| 488 | |
---|
| 489 | // get first cluster index from FATFS inode |
---|
| 490 | uint32_t first_cluster = fatfs_inode->first_cluster; |
---|
| 491 | |
---|
| 492 | // get FATFS context pointer from FATFS inode |
---|
[23] | 493 | fatfs_ctx_t * fatfs_ctx = (fatfs_ctx_t *)vfs_inode->ctx->extend; |
---|
[1] | 494 | |
---|
| 495 | // get number of sectors |
---|
| 496 | uint32_t count = fatfs_ctx->sectors_per_cluster; |
---|
| 497 | |
---|
| 498 | // compute FATFS_cluster index for the accessed page |
---|
[10] | 499 | uint32_t cluster = 0; |
---|
[1] | 500 | error_t error = fatfs_cluster_from_index( fatfs_ctx, |
---|
| 501 | first_cluster, |
---|
| 502 | page_index, |
---|
| 503 | &cluster ); |
---|
| 504 | if( error ) return EIO; |
---|
| 505 | |
---|
| 506 | // get lba from cluster |
---|
| 507 | uint32_t lba = fatfs_lba_from_cluster( fatfs_ctx , cluster ); |
---|
| 508 | |
---|
| 509 | // access device |
---|
| 510 | if( is_read ) error = dev_ioc_read ( buffer , lba , count ); |
---|
| 511 | else error = dev_ioc_write( buffer , lba , count ); |
---|
| 512 | |
---|
| 513 | if( error ) |
---|
| 514 | { |
---|
| 515 | printk("\n[ERROR] in %s : cannot access IOC device\n", __FUNCTION__ ); |
---|
| 516 | return error; |
---|
| 517 | } |
---|
| 518 | |
---|
| 519 | // successful access |
---|
| 520 | return 0; |
---|
| 521 | } |
---|
| 522 | |
---|
| 523 | //////////////////////////////////////////////// |
---|
| 524 | error_t fatfs_write_page( struct page_s * page ) |
---|
| 525 | { |
---|
| 526 | bool_t is_read = false; |
---|
| 527 | return fatfs_access_page( page , is_read ); |
---|
| 528 | } |
---|
| 529 | |
---|
| 530 | /////////////////////////////////////////////// |
---|
| 531 | error_t fatfs_read_page( struct page_s * page ) |
---|
| 532 | { |
---|
| 533 | bool_t is_read = true; |
---|
| 534 | return fatfs_access_page( page , is_read ); |
---|
| 535 | } |
---|
| 536 | |
---|