[469] | 1 | /* |
---|
| 2 | * ==================================================== |
---|
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
| 4 | * |
---|
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
| 6 | * Permission to use, copy, modify, and distribute this |
---|
| 7 | * software is freely granted, provided that this notice |
---|
| 8 | * is preserved. |
---|
| 9 | * ==================================================== |
---|
| 10 | */ |
---|
| 11 | |
---|
| 12 | /* |
---|
| 13 | * Modified for ALMOS-MKH OS at UPMC, France, August 2018. (Alain Greiner) |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | /* __ieee754_pow(x,y) return x**y |
---|
| 17 | * |
---|
| 18 | * n |
---|
| 19 | * Method: Let x = 2 * (1+f) |
---|
| 20 | * 1. Compute and return log2(x) in two pieces: |
---|
| 21 | * log2(x) = w1 + w2, |
---|
| 22 | * where w1 has 53-24 = 29 bit trailing zeros. |
---|
| 23 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
---|
| 24 | * arithmetic, where |y'|<=0.5. |
---|
| 25 | * 3. Return x**y = 2**n*exp(y'*log2) |
---|
| 26 | * |
---|
| 27 | * Special cases: |
---|
| 28 | * 1. +-1 ** anything is 1.0 |
---|
| 29 | * 2. +-1 ** +-INF is 1.0 |
---|
| 30 | * 3. (anything) ** 0 is 1 |
---|
| 31 | * 4. (anything) ** 1 is itself |
---|
| 32 | * 5. (anything) ** NAN is NAN |
---|
| 33 | * 6. NAN ** (anything except 0) is NAN |
---|
| 34 | * 7. +-(|x| > 1) ** +INF is +INF |
---|
| 35 | * 8. +-(|x| > 1) ** -INF is +0 |
---|
| 36 | * 9. +-(|x| < 1) ** +INF is +0 |
---|
| 37 | * 10 +-(|x| < 1) ** -INF is +INF |
---|
| 38 | * 11. +0 ** (+anything except 0, NAN) is +0 |
---|
| 39 | * 12. -0 ** (+anything except 0, NAN, odd integer) is +0 |
---|
| 40 | * 13. +0 ** (-anything except 0, NAN) is +INF |
---|
| 41 | * 14. -0 ** (-anything except 0, NAN, odd integer) is +INF |
---|
| 42 | * 15. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
---|
| 43 | * 16. +INF ** (+anything except 0,NAN) is +INF |
---|
| 44 | * 17. +INF ** (-anything except 0,NAN) is +0 |
---|
| 45 | * 18. -INF ** (anything) = -0 ** (-anything) |
---|
| 46 | * 19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
---|
| 47 | * 20. (-anything except 0 and inf) ** (non-integer) is NAN |
---|
| 48 | * |
---|
| 49 | * Accuracy: |
---|
| 50 | * pow(x,y) returns x**y nearly rounded. In particular |
---|
| 51 | * pow(integer,integer) |
---|
| 52 | * always returns the correct integer provided it is |
---|
| 53 | * representable. |
---|
| 54 | * |
---|
| 55 | * Constants : |
---|
| 56 | * The hexadecimal values are the intended ones for the following |
---|
| 57 | * constants. The decimal values may be used, provided that the |
---|
| 58 | * compiler will convert from decimal to binary accurately enough |
---|
| 59 | * to produce the hexadecimal values shown. |
---|
| 60 | */ |
---|
| 61 | |
---|
| 62 | #include "math.h" |
---|
| 63 | #include "math_private.h" |
---|
| 64 | |
---|
| 65 | static const double |
---|
| 66 | bp[] = {1.0, 1.5,}, |
---|
| 67 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
---|
| 68 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
---|
| 69 | zero = 0.0, |
---|
| 70 | one = 1.0, |
---|
| 71 | two = 2.0, |
---|
| 72 | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
---|
| 73 | huge = 1.0e300, |
---|
| 74 | tiny = 1.0e-300, |
---|
| 75 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
---|
| 76 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
---|
| 77 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
---|
| 78 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
---|
| 79 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
---|
| 80 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
---|
| 81 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
---|
| 82 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
---|
| 83 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
---|
| 84 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
---|
| 85 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
---|
| 86 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
---|
| 87 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
---|
| 88 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
---|
| 89 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
---|
| 90 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
---|
| 91 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
---|
| 92 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
---|
| 93 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
---|
| 94 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
---|
| 95 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
---|
| 96 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
---|
| 97 | |
---|
| 98 | double __ieee754_pow(double x, double y) |
---|
| 99 | { |
---|
| 100 | double z,ax,z_h,z_l,p_h,p_l; |
---|
| 101 | double y1,t1,t2,r,s,t,u,v,w; |
---|
| 102 | int32_t i,j,k,yisint,n; |
---|
| 103 | int32_t hx,hy,ix,iy; |
---|
| 104 | uint32_t lx,ly; |
---|
| 105 | |
---|
| 106 | EXTRACT_WORDS(hx,lx,x); |
---|
| 107 | /* x==1: 1**y = 1 (even if y is NaN) */ |
---|
| 108 | if (hx==0x3ff00000 && lx==0) { |
---|
| 109 | return x; |
---|
| 110 | } |
---|
| 111 | ix = hx&0x7fffffff; |
---|
| 112 | |
---|
| 113 | EXTRACT_WORDS(hy,ly,y); |
---|
| 114 | iy = hy&0x7fffffff; |
---|
| 115 | |
---|
| 116 | /* y==zero: x**0 = 1 */ |
---|
| 117 | if((iy|ly)==0) return one; |
---|
| 118 | |
---|
| 119 | /* +-NaN return x+y */ |
---|
| 120 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
---|
| 121 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
---|
| 122 | return x+y; |
---|
| 123 | |
---|
| 124 | /* determine if y is an odd int when x < 0 |
---|
| 125 | * yisint = 0 ... y is not an integer |
---|
| 126 | * yisint = 1 ... y is an odd int |
---|
| 127 | * yisint = 2 ... y is an even int |
---|
| 128 | */ |
---|
| 129 | yisint = 0; |
---|
| 130 | if(hx<0) { |
---|
| 131 | if(iy>=0x43400000) yisint = 2; /* even integer y */ |
---|
| 132 | else if(iy>=0x3ff00000) { |
---|
| 133 | k = (iy>>20)-0x3ff; /* exponent */ |
---|
| 134 | if(k>20) { |
---|
| 135 | j = ly>>(52-k); |
---|
[633] | 136 | if((j<<(52-k))==(int32_t)ly) yisint = 2-(j&1); |
---|
[469] | 137 | } else if(ly==0) { |
---|
| 138 | j = iy>>(20-k); |
---|
| 139 | if((j<<(20-k))==iy) yisint = 2-(j&1); |
---|
| 140 | } |
---|
| 141 | } |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | /* special value of y */ |
---|
| 145 | if(ly==0) { |
---|
| 146 | if (iy==0x7ff00000) { /* y is +-inf */ |
---|
| 147 | if (((ix-0x3ff00000)|lx)==0) |
---|
| 148 | return one; /* +-1**+-inf is 1 (yes, weird rule) */ |
---|
| 149 | if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ |
---|
| 150 | return (hy>=0) ? y : zero; |
---|
| 151 | /* (|x|<1)**-,+inf = inf,0 */ |
---|
| 152 | return (hy<0) ? -y : zero; |
---|
| 153 | } |
---|
| 154 | if(iy==0x3ff00000) { /* y is +-1 */ |
---|
| 155 | if(hy<0) return one/x; else return x; |
---|
| 156 | } |
---|
| 157 | if(hy==0x40000000) return x*x; /* y is 2 */ |
---|
| 158 | if(hy==0x3fe00000) { /* y is 0.5 */ |
---|
| 159 | if(hx>=0) /* x >= +0 */ |
---|
| 160 | return sqrt(x); |
---|
| 161 | } |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | ax = fabs(x); |
---|
| 165 | /* special value of x */ |
---|
| 166 | if(lx==0) { |
---|
| 167 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
---|
| 168 | z = ax; /*x is +-0,+-inf,+-1*/ |
---|
| 169 | if(hy<0) z = one/z; /* z = (1/|x|) */ |
---|
| 170 | if(hx<0) { |
---|
| 171 | if(((ix-0x3ff00000)|yisint)==0) { |
---|
| 172 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
---|
| 173 | } else if(yisint==1) |
---|
| 174 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
---|
| 175 | } |
---|
| 176 | return z; |
---|
| 177 | } |
---|
| 178 | } |
---|
| 179 | |
---|
| 180 | /* (x<0)**(non-int) is NaN */ |
---|
| 181 | if(((((uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); |
---|
| 182 | |
---|
| 183 | /* |y| is huge */ |
---|
| 184 | if(iy>0x41e00000) { /* if |y| > 2**31 */ |
---|
| 185 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
---|
| 186 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
---|
| 187 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
---|
| 188 | } |
---|
| 189 | /* over/underflow if x is not close to one */ |
---|
| 190 | if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
---|
| 191 | if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
---|
| 192 | /* now |1-x| is tiny <= 2**-20, suffice to compute |
---|
| 193 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
---|
| 194 | t = x-1; /* t has 20 trailing zeros */ |
---|
| 195 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
---|
| 196 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
---|
| 197 | v = t*ivln2_l-w*ivln2; |
---|
| 198 | t1 = u+v; |
---|
| 199 | SET_LOW_WORD(t1,0); |
---|
| 200 | t2 = v-(t1-u); |
---|
| 201 | } else { |
---|
| 202 | double s2,s_h,s_l,t_h,t_l; |
---|
| 203 | n = 0; |
---|
| 204 | /* take care subnormal number */ |
---|
| 205 | if(ix<0x00100000) |
---|
| 206 | {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } |
---|
| 207 | n += ((ix)>>20)-0x3ff; |
---|
| 208 | j = ix&0x000fffff; |
---|
| 209 | /* determine interval */ |
---|
| 210 | ix = j|0x3ff00000; /* normalize ix */ |
---|
| 211 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
---|
| 212 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
---|
| 213 | else {k=0;n+=1;ix -= 0x00100000;} |
---|
| 214 | SET_HIGH_WORD(ax,ix); |
---|
| 215 | |
---|
| 216 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
---|
| 217 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
---|
| 218 | v = one/(ax+bp[k]); |
---|
| 219 | s = u*v; |
---|
| 220 | s_h = s; |
---|
| 221 | SET_LOW_WORD(s_h,0); |
---|
| 222 | /* t_h=ax+bp[k] High */ |
---|
| 223 | t_h = zero; |
---|
| 224 | SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); |
---|
| 225 | t_l = ax - (t_h-bp[k]); |
---|
| 226 | s_l = v*((u-s_h*t_h)-s_h*t_l); |
---|
| 227 | /* compute log(ax) */ |
---|
| 228 | s2 = s*s; |
---|
| 229 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
---|
| 230 | r += s_l*(s_h+s); |
---|
| 231 | s2 = s_h*s_h; |
---|
| 232 | t_h = 3.0+s2+r; |
---|
| 233 | SET_LOW_WORD(t_h,0); |
---|
| 234 | t_l = r-((t_h-3.0)-s2); |
---|
| 235 | /* u+v = s*(1+...) */ |
---|
| 236 | u = s_h*t_h; |
---|
| 237 | v = s_l*t_h+t_l*s; |
---|
| 238 | /* 2/(3log2)*(s+...) */ |
---|
| 239 | p_h = u+v; |
---|
| 240 | SET_LOW_WORD(p_h,0); |
---|
| 241 | p_l = v-(p_h-u); |
---|
| 242 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
---|
| 243 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
---|
| 244 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
---|
| 245 | t = (double)n; |
---|
| 246 | t1 = (((z_h+z_l)+dp_h[k])+t); |
---|
| 247 | SET_LOW_WORD(t1,0); |
---|
| 248 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
---|
| 252 | if(((((uint32_t)hx>>31)-1)|(yisint-1))==0) |
---|
| 253 | s = -one;/* (-ve)**(odd int) */ |
---|
| 254 | |
---|
| 255 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
---|
| 256 | y1 = y; |
---|
| 257 | SET_LOW_WORD(y1,0); |
---|
| 258 | p_l = (y-y1)*t1+y*t2; |
---|
| 259 | p_h = y1*t1; |
---|
| 260 | z = p_l+p_h; |
---|
| 261 | EXTRACT_WORDS(j,i,z); |
---|
| 262 | if (j>=0x40900000) { /* z >= 1024 */ |
---|
| 263 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
---|
| 264 | return s*huge*huge; /* overflow */ |
---|
| 265 | else { |
---|
| 266 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
---|
| 267 | } |
---|
| 268 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
---|
| 269 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
---|
| 270 | return s*tiny*tiny; /* underflow */ |
---|
| 271 | else { |
---|
| 272 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
---|
| 273 | } |
---|
| 274 | } |
---|
| 275 | /* |
---|
| 276 | * compute 2**(p_h+p_l) |
---|
| 277 | */ |
---|
| 278 | i = j&0x7fffffff; |
---|
| 279 | k = (i>>20)-0x3ff; |
---|
| 280 | n = 0; |
---|
| 281 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
---|
| 282 | n = j+(0x00100000>>(k+1)); |
---|
| 283 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
---|
| 284 | t = zero; |
---|
| 285 | SET_HIGH_WORD(t,n&~(0x000fffff>>k)); |
---|
| 286 | n = ((n&0x000fffff)|0x00100000)>>(20-k); |
---|
| 287 | if(j<0) n = -n; |
---|
| 288 | p_h -= t; |
---|
| 289 | } |
---|
| 290 | t = p_l+p_h; |
---|
| 291 | SET_LOW_WORD(t,0); |
---|
| 292 | u = t*lg2_h; |
---|
| 293 | v = (p_l-(t-p_h))*lg2+t*lg2_l; |
---|
| 294 | z = u+v; |
---|
| 295 | w = v-(z-u); |
---|
| 296 | t = z*z; |
---|
| 297 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
---|
| 298 | r = (z*t1)/(t1-two)-(w+z*w); |
---|
| 299 | z = one-(r-z); |
---|
| 300 | GET_HIGH_WORD(j,z); |
---|
| 301 | j += (n<<20); |
---|
| 302 | if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ |
---|
| 303 | else SET_HIGH_WORD(z,j); |
---|
| 304 | return s*z; |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | /* |
---|
| 308 | * wrapper pow(x,y) return x**y |
---|
| 309 | */ |
---|
| 310 | double pow(double x, double y) |
---|
| 311 | { |
---|
| 312 | double z = __ieee754_pow(x, y); |
---|
| 313 | if (isnan(y)) { |
---|
| 314 | return z; |
---|
| 315 | } |
---|
| 316 | if (isnan(x)) { |
---|
| 317 | if (y == 0.0) { |
---|
| 318 | return x; /* pow(NaN,0.0) */ |
---|
| 319 | } |
---|
| 320 | return z; |
---|
| 321 | } |
---|
| 322 | if (x == 0.0) { |
---|
| 323 | if (y == 0.0) { |
---|
| 324 | return 0; /* pow(0.0,0.0) */ |
---|
| 325 | } |
---|
| 326 | if (isfinite(y) && y < 0.0) { |
---|
| 327 | return -huge; /* pow(0.0,negative) */ |
---|
| 328 | } |
---|
| 329 | return z; |
---|
| 330 | } |
---|
| 331 | if (!isfinite(z)) { |
---|
| 332 | if (isfinite(x) && isfinite(y)) { |
---|
| 333 | if (isnan(z)) { |
---|
| 334 | return 0.0 / 0.0; /* pow neg**non-int */ |
---|
| 335 | } |
---|
| 336 | { |
---|
| 337 | double ret = huge; |
---|
| 338 | y *= 0.5; |
---|
| 339 | if (x < zero && rint(y) !=y ) { |
---|
| 340 | ret = -huge; |
---|
| 341 | } |
---|
| 342 | return ret; |
---|
| 343 | } |
---|
| 344 | } |
---|
| 345 | } |
---|
| 346 | if (z == 0.0 && isfinite(x) && isfinite(y)) { |
---|
| 347 | return 0.0; |
---|
| 348 | } |
---|
| 349 | return z; |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | /* |
---|
| 353 | * Pseudo exp function (QM) |
---|
| 354 | * There probably is a better implementation |
---|
| 355 | */ |
---|
| 356 | double exp(double x) |
---|
| 357 | { |
---|
| 358 | const double e = 2.71828182846; |
---|
| 359 | return pow(e, x); |
---|
| 360 | } |
---|
| 361 | |
---|