| 1 | /* | 
|---|
| 2 | * ==================================================== | 
|---|
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|---|
| 4 | * | 
|---|
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|---|
| 6 | * Permission to use, copy, modify, and distribute this | 
|---|
| 7 | * software is freely granted, provided that this notice | 
|---|
| 8 | * is preserved. | 
|---|
| 9 | * ==================================================== | 
|---|
| 10 | */ | 
|---|
| 11 |  | 
|---|
| 12 | /* | 
|---|
| 13 | * Modified for ALMOS-MKH OS at UPMC, France, August 2018. (Alain Greiner) | 
|---|
| 14 | */ | 
|---|
| 15 |  | 
|---|
| 16 | /* __ieee754_sqrt(x) | 
|---|
| 17 | * Return correctly rounded sqrt. | 
|---|
| 18 | *           ------------------------------------------ | 
|---|
| 19 | *           |  Use the hardware sqrt if you have one | | 
|---|
| 20 | *           ------------------------------------------ | 
|---|
| 21 | * Method: | 
|---|
| 22 | *   Bit by bit method using integer arithmetic. (Slow, but portable) | 
|---|
| 23 | *   1. Normalization | 
|---|
| 24 | *      Scale x to y in [1,4) with even powers of 2: | 
|---|
| 25 | *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then | 
|---|
| 26 | *              sqrt(x) = 2^k * sqrt(y) | 
|---|
| 27 | *   2. Bit by bit computation | 
|---|
| 28 | *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1), | 
|---|
| 29 | *           i                                                   0 | 
|---|
| 30 | *                                     i+1         2 | 
|---|
| 31 | *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1) | 
|---|
| 32 | *           i      i            i                 i | 
|---|
| 33 | * | 
|---|
| 34 | *      To compute q    from q , one checks whether | 
|---|
| 35 | *                  i+1       i | 
|---|
| 36 | * | 
|---|
| 37 | *                            -(i+1) 2 | 
|---|
| 38 | *                      (q + 2      ) <= y.                     (2) | 
|---|
| 39 | *                        i | 
|---|
| 40 | *                                                            -(i+1) | 
|---|
| 41 | *      If (2) is false, then q   = q ; otherwise q   = q  + 2      . | 
|---|
| 42 | *                             i+1   i             i+1   i | 
|---|
| 43 | * | 
|---|
| 44 | *      With some algebric manipulation, it is not difficult to see | 
|---|
| 45 | *      that (2) is equivalent to | 
|---|
| 46 | *                             -(i+1) | 
|---|
| 47 | *                      s  +  2       <= y                      (3) | 
|---|
| 48 | *                       i                i | 
|---|
| 49 | * | 
|---|
| 50 | *      The advantage of (3) is that s  and y  can be computed by | 
|---|
| 51 | *                                    i      i | 
|---|
| 52 | *      the following recurrence formula: | 
|---|
| 53 | *          if (3) is false | 
|---|
| 54 | * | 
|---|
| 55 | *          s     =  s  ,       y    = y   ;                    (4) | 
|---|
| 56 | *           i+1      i          i+1    i | 
|---|
| 57 | * | 
|---|
| 58 | *          otherwise, | 
|---|
| 59 | *                         -i                     -(i+1) | 
|---|
| 60 | *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5) | 
|---|
| 61 | *           i+1      i          i+1    i     i | 
|---|
| 62 | * | 
|---|
| 63 | *      One may easily use induction to prove (4) and (5). | 
|---|
| 64 | *      Note. Since the left hand side of (3) contain only i+2 bits, | 
|---|
| 65 | *            it does not necessary to do a full (53-bit) comparison | 
|---|
| 66 | *            in (3). | 
|---|
| 67 | *   3. Final rounding | 
|---|
| 68 | *      After generating the 53 bits result, we compute one more bit. | 
|---|
| 69 | *      Together with the remainder, we can decide whether the | 
|---|
| 70 | *      result is exact, bigger than 1/2ulp, or less than 1/2ulp | 
|---|
| 71 | *      (it will never equal to 1/2ulp). | 
|---|
| 72 | *      The rounding mode can be detected by checking whether | 
|---|
| 73 | *      huge + tiny is equal to huge, and whether huge - tiny is | 
|---|
| 74 | *      equal to huge for some floating point number "huge" and "tiny". | 
|---|
| 75 | * | 
|---|
| 76 | * Special cases: | 
|---|
| 77 | *      sqrt(+-0) = +-0         ... exact | 
|---|
| 78 | *      sqrt(inf) = inf | 
|---|
| 79 | *      sqrt(-ve) = NaN         ... with invalid signal | 
|---|
| 80 | *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN | 
|---|
| 81 | * | 
|---|
| 82 | * Other methods : see the appended file at the end of the program below. | 
|---|
| 83 | *--------------- | 
|---|
| 84 | */ | 
|---|
| 85 |  | 
|---|
| 86 | #include "math.h" | 
|---|
| 87 | #include "math_private.h" | 
|---|
| 88 |  | 
|---|
| 89 | static const double one = 1.0, tiny = 1.0e-300; | 
|---|
| 90 |  | 
|---|
| 91 | double __ieee754_sqrt(double x) | 
|---|
| 92 | { | 
|---|
| 93 | double z; | 
|---|
| 94 | int32_t sign = (int)0x80000000; | 
|---|
| 95 | int32_t ix0,s0,q,m,t,i; | 
|---|
| 96 | uint32_t r,t1,s1,ix1,q1; | 
|---|
| 97 |  | 
|---|
| 98 | EXTRACT_WORDS(ix0,ix1,x); | 
|---|
| 99 |  | 
|---|
| 100 | /* take care of Inf and NaN */ | 
|---|
| 101 | if((ix0&0x7ff00000)==0x7ff00000) { | 
|---|
| 102 | return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf | 
|---|
| 103 | sqrt(-inf)=sNaN */ | 
|---|
| 104 | } | 
|---|
| 105 | /* take care of zero */ | 
|---|
| 106 | if(ix0<=0) { | 
|---|
| 107 | if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ | 
|---|
| 108 | else if(ix0<0) | 
|---|
| 109 | return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */ | 
|---|
| 110 | } | 
|---|
| 111 | /* normalize x */ | 
|---|
| 112 | m = (ix0>>20); | 
|---|
| 113 | if(m==0) {                              /* subnormal x */ | 
|---|
| 114 | while(ix0==0) { | 
|---|
| 115 | m -= 21; | 
|---|
| 116 | ix0 |= (ix1>>11); ix1 <<= 21; | 
|---|
| 117 | } | 
|---|
| 118 | for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; | 
|---|
| 119 | m -= i-1; | 
|---|
| 120 | ix0 |= (ix1>>(32-i)); | 
|---|
| 121 | ix1 <<= i; | 
|---|
| 122 | } | 
|---|
| 123 | m -= 1023;      /* unbias exponent */ | 
|---|
| 124 | ix0 = (ix0&0x000fffff)|0x00100000; | 
|---|
| 125 | if(m&1){        /* odd m, double x to make it even */ | 
|---|
| 126 | ix0 += ix0 + ((ix1&sign)>>31); | 
|---|
| 127 | ix1 += ix1; | 
|---|
| 128 | } | 
|---|
| 129 | m >>= 1;        /* m = [m/2] */ | 
|---|
| 130 |  | 
|---|
| 131 | /* generate sqrt(x) bit by bit */ | 
|---|
| 132 | ix0 += ix0 + ((ix1&sign)>>31); | 
|---|
| 133 | ix1 += ix1; | 
|---|
| 134 | q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */ | 
|---|
| 135 | r = 0x00200000;         /* r = moving bit from right to left */ | 
|---|
| 136 |  | 
|---|
| 137 | while(r!=0) { | 
|---|
| 138 | t = s0+r; | 
|---|
| 139 | if(t<=ix0) { | 
|---|
| 140 | s0   = t+r; | 
|---|
| 141 | ix0 -= t; | 
|---|
| 142 | q   += r; | 
|---|
| 143 | } | 
|---|
| 144 | ix0 += ix0 + ((ix1&sign)>>31); | 
|---|
| 145 | ix1 += ix1; | 
|---|
| 146 | r>>=1; | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | r = sign; | 
|---|
| 150 | while(r!=0) { | 
|---|
| 151 | t1 = s1+r; | 
|---|
| 152 | t  = s0; | 
|---|
| 153 | if((t<ix0)||((t==ix0)&&(t1<=ix1))) { | 
|---|
| 154 | s1  = t1+r; | 
|---|
| 155 | if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; | 
|---|
| 156 | ix0 -= t; | 
|---|
| 157 | if (ix1 < t1) ix0 -= 1; | 
|---|
| 158 | ix1 -= t1; | 
|---|
| 159 | q1  += r; | 
|---|
| 160 | } | 
|---|
| 161 | ix0 += ix0 + ((ix1&sign)>>31); | 
|---|
| 162 | ix1 += ix1; | 
|---|
| 163 | r>>=1; | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | /* use floating add to find out rounding direction */ | 
|---|
| 167 | if((ix0|ix1)!=0) { | 
|---|
| 168 | z = one-tiny; /* trigger inexact flag */ | 
|---|
| 169 | if (z>=one) { | 
|---|
| 170 | z = one+tiny; | 
|---|
| 171 | if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;} | 
|---|
| 172 | else if (z>one) { | 
|---|
| 173 | if (q1==(uint32_t)0xfffffffe) q+=1; | 
|---|
| 174 | q1+=2; | 
|---|
| 175 | } else | 
|---|
| 176 | q1 += (q1&1); | 
|---|
| 177 | } | 
|---|
| 178 | } | 
|---|
| 179 | ix0 = (q>>1)+0x3fe00000; | 
|---|
| 180 | ix1 =  q1>>1; | 
|---|
| 181 | if ((q&1)==1) ix1 |= sign; | 
|---|
| 182 | ix0 += (m <<20); | 
|---|
| 183 | INSERT_WORDS(z,ix0,ix1); | 
|---|
| 184 | return z; | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 |  | 
|---|
| 188 |  | 
|---|
| 189 | /* | 
|---|
| 190 | Other methods  (use floating-point arithmetic) | 
|---|
| 191 | ------------- | 
|---|
| 192 | (This is a copy of a drafted paper by Prof W. Kahan | 
|---|
| 193 | and K.C. Ng, written in May, 1986) | 
|---|
| 194 |  | 
|---|
| 195 | Two algorithms are given here to implement sqrt(x) | 
|---|
| 196 | (IEEE double precision arithmetic) in software. | 
|---|
| 197 | Both supply sqrt(x) correctly rounded. The first algorithm (in | 
|---|
| 198 | Section A) uses newton iterations and involves four divisions. | 
|---|
| 199 | The second one uses reciproot iterations to avoid division, but | 
|---|
| 200 | requires more multiplications. Both algorithms need the ability | 
|---|
| 201 | to chop results of arithmetic operations instead of round them, | 
|---|
| 202 | and the INEXACT flag to indicate when an arithmetic operation | 
|---|
| 203 | is executed exactly with no roundoff error, all part of the | 
|---|
| 204 | standard (IEEE 754-1985). The ability to perform shift, add, | 
|---|
| 205 | subtract and logical AND operations upon 32-bit words is needed | 
|---|
| 206 | too, though not part of the standard. | 
|---|
| 207 |  | 
|---|
| 208 | A.  sqrt(x) by Newton Iteration | 
|---|
| 209 |  | 
|---|
| 210 | (1)  Initial approximation | 
|---|
| 211 |  | 
|---|
| 212 | Let x0 and x1 be the leading and the trailing 32-bit words of | 
|---|
| 213 | a floating point number x (in IEEE double format) respectively | 
|---|
| 214 |  | 
|---|
| 215 | 1    11                  52                           ...widths | 
|---|
| 216 | ------------------------------------------------------ | 
|---|
| 217 | x: |s|    e     |             f                         | | 
|---|
| 218 | ------------------------------------------------------ | 
|---|
| 219 | msb    lsb  msb                                 lsb ...order | 
|---|
| 220 |  | 
|---|
| 221 |  | 
|---|
| 222 | ------------------------        ------------------------ | 
|---|
| 223 | x0:  |s|   e    |    f1     |    x1: |          f2           | | 
|---|
| 224 | ------------------------        ------------------------ | 
|---|
| 225 |  | 
|---|
| 226 | By performing shifts and subtracts on x0 and x1 (both regarded | 
|---|
| 227 | as integers), we obtain an 8-bit approximation of sqrt(x) as | 
|---|
| 228 | follows. | 
|---|
| 229 |  | 
|---|
| 230 | k  := (x0>>1) + 0x1ff80000; | 
|---|
| 231 | y0 := k - T1[31&(k>>15)].       ... y ~ sqrt(x) to 8 bits | 
|---|
| 232 | Here k is a 32-bit integer and T1[] is an integer array containing | 
|---|
| 233 | correction terms. Now magically the floating value of y (y's | 
|---|
| 234 | leading 32-bit word is y0, the value of its trailing word is 0) | 
|---|
| 235 | approximates sqrt(x) to almost 8-bit. | 
|---|
| 236 |  | 
|---|
| 237 | Value of T1: | 
|---|
| 238 | static int T1[32]= { | 
|---|
| 239 | 0,      1024,   3062,   5746,   9193,   13348,  18162,  23592, | 
|---|
| 240 | 29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215, | 
|---|
| 241 | 83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581, | 
|---|
| 242 | 16499,  12183,  8588,   5674,   3403,   1742,   661,    130,}; | 
|---|
| 243 |  | 
|---|
| 244 | (2) Iterative refinement | 
|---|
| 245 |  | 
|---|
| 246 | Apply Heron's rule three times to y, we have y approximates | 
|---|
| 247 | sqrt(x) to within 1 ulp (Unit in the Last Place): | 
|---|
| 248 |  | 
|---|
| 249 | y := (y+x/y)/2          ... almost 17 sig. bits | 
|---|
| 250 | y := (y+x/y)/2          ... almost 35 sig. bits | 
|---|
| 251 | y := y-(y-x/y)/2        ... within 1 ulp | 
|---|
| 252 |  | 
|---|
| 253 |  | 
|---|
| 254 | Remark 1. | 
|---|
| 255 | Another way to improve y to within 1 ulp is: | 
|---|
| 256 |  | 
|---|
| 257 | y := (y+x/y)            ... almost 17 sig. bits to 2*sqrt(x) | 
|---|
| 258 | y := y - 0x00100006     ... almost 18 sig. bits to sqrt(x) | 
|---|
| 259 |  | 
|---|
| 260 | 2 | 
|---|
| 261 | (x-y )*y | 
|---|
| 262 | y := y + 2* ----------  ...within 1 ulp | 
|---|
| 263 | 2 | 
|---|
| 264 | 3y  + x | 
|---|
| 265 |  | 
|---|
| 266 |  | 
|---|
| 267 | This formula has one division fewer than the one above; however, | 
|---|
| 268 | it requires more multiplications and additions. Also x must be | 
|---|
| 269 | scaled in advance to avoid spurious overflow in evaluating the | 
|---|
| 270 | expression 3y*y+x. Hence it is not recommended uless division | 
|---|
| 271 | is slow. If division is very slow, then one should use the | 
|---|
| 272 | reciproot algorithm given in section B. | 
|---|
| 273 |  | 
|---|
| 274 | (3) Final adjustment | 
|---|
| 275 |  | 
|---|
| 276 | By twiddling y's last bit it is possible to force y to be | 
|---|
| 277 | correctly rounded according to the prevailing rounding mode | 
|---|
| 278 | as follows. Let r and i be copies of the rounding mode and | 
|---|
| 279 | inexact flag before entering the square root program. Also we | 
|---|
| 280 | use the expression y+-ulp for the next representable floating | 
|---|
| 281 | numbers (up and down) of y. Note that y+-ulp = either fixed | 
|---|
| 282 | point y+-1, or multiply y by nextafter(1,+-inf) in chopped | 
|---|
| 283 | mode. | 
|---|
| 284 |  | 
|---|
| 285 | I := FALSE;     ... reset INEXACT flag I | 
|---|
| 286 | R := RZ;        ... set rounding mode to round-toward-zero | 
|---|
| 287 | z := x/y;       ... chopped quotient, possibly inexact | 
|---|
| 288 | If(not I) then {        ... if the quotient is exact | 
|---|
| 289 | if(z=y) { | 
|---|
| 290 | I := i;  ... restore inexact flag | 
|---|
| 291 | R := r;  ... restore rounded mode | 
|---|
| 292 | return sqrt(x):=y. | 
|---|
| 293 | } else { | 
|---|
| 294 | z := z - ulp;   ... special rounding | 
|---|
| 295 | } | 
|---|
| 296 | } | 
|---|
| 297 | i := TRUE;              ... sqrt(x) is inexact | 
|---|
| 298 | If (r=RN) then z=z+ulp  ... rounded-to-nearest | 
|---|
| 299 | If (r=RP) then {        ... round-toward-+inf | 
|---|
| 300 | y = y+ulp; z=z+ulp; | 
|---|
| 301 | } | 
|---|
| 302 | y := y+z;               ... chopped sum | 
|---|
| 303 | y0:=y0-0x00100000;      ... y := y/2 is correctly rounded. | 
|---|
| 304 | I := i;                 ... restore inexact flag | 
|---|
| 305 | R := r;                 ... restore rounded mode | 
|---|
| 306 | return sqrt(x):=y. | 
|---|
| 307 |  | 
|---|
| 308 | (4) Special cases | 
|---|
| 309 |  | 
|---|
| 310 | Square root of +inf, +-0, or NaN is itself; | 
|---|
| 311 | Square root of a negative number is NaN with invalid signal. | 
|---|
| 312 |  | 
|---|
| 313 |  | 
|---|
| 314 | B.  sqrt(x) by Reciproot Iteration | 
|---|
| 315 |  | 
|---|
| 316 | (1)  Initial approximation | 
|---|
| 317 |  | 
|---|
| 318 | Let x0 and x1 be the leading and the trailing 32-bit words of | 
|---|
| 319 | a floating point number x (in IEEE double format) respectively | 
|---|
| 320 | (see section A). By performing shifs and subtracts on x0 and y0, | 
|---|
| 321 | we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. | 
|---|
| 322 |  | 
|---|
| 323 | k := 0x5fe80000 - (x0>>1); | 
|---|
| 324 | y0:= k - T2[63&(k>>14)].    ... y ~ 1/sqrt(x) to 7.8 bits | 
|---|
| 325 |  | 
|---|
| 326 | Here k is a 32-bit integer and T2[] is an integer array | 
|---|
| 327 | containing correction terms. Now magically the floating | 
|---|
| 328 | value of y (y's leading 32-bit word is y0, the value of | 
|---|
| 329 | its trailing word y1 is set to zero) approximates 1/sqrt(x) | 
|---|
| 330 | to almost 7.8-bit. | 
|---|
| 331 |  | 
|---|
| 332 | Value of T2: | 
|---|
| 333 | static int T2[64]= { | 
|---|
| 334 | 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, | 
|---|
| 335 | 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, | 
|---|
| 336 | 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, | 
|---|
| 337 | 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, | 
|---|
| 338 | 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, | 
|---|
| 339 | 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, | 
|---|
| 340 | 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, | 
|---|
| 341 | 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; | 
|---|
| 342 |  | 
|---|
| 343 | (2) Iterative refinement | 
|---|
| 344 |  | 
|---|
| 345 | Apply Reciproot iteration three times to y and multiply the | 
|---|
| 346 | result by x to get an approximation z that matches sqrt(x) | 
|---|
| 347 | to about 1 ulp. To be exact, we will have | 
|---|
| 348 | -1ulp < sqrt(x)-z<1.0625ulp. | 
|---|
| 349 |  | 
|---|
| 350 | ... set rounding mode to Round-to-nearest | 
|---|
| 351 | y := y*(1.5-0.5*x*y*y)       ... almost 15 sig. bits to 1/sqrt(x) | 
|---|
| 352 | y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) | 
|---|
| 353 | ... special arrangement for better accuracy | 
|---|
| 354 | z := x*y                     ... 29 bits to sqrt(x), with z*y<1 | 
|---|
| 355 | z := z + 0.5*z*(1-z*y)       ... about 1 ulp to sqrt(x) | 
|---|
| 356 |  | 
|---|
| 357 | Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that | 
|---|
| 358 | (a) the term z*y in the final iteration is always less than 1; | 
|---|
| 359 | (b) the error in the final result is biased upward so that | 
|---|
| 360 | -1 ulp < sqrt(x) - z < 1.0625 ulp | 
|---|
| 361 | instead of |sqrt(x)-z|<1.03125ulp. | 
|---|
| 362 |  | 
|---|
| 363 | (3) Final adjustment | 
|---|
| 364 |  | 
|---|
| 365 | By twiddling y's last bit it is possible to force y to be | 
|---|
| 366 | correctly rounded according to the prevailing rounding mode | 
|---|
| 367 | as follows. Let r and i be copies of the rounding mode and | 
|---|
| 368 | inexact flag before entering the square root program. Also we | 
|---|
| 369 | use the expression y+-ulp for the next representable floating | 
|---|
| 370 | numbers (up and down) of y. Note that y+-ulp = either fixed | 
|---|
| 371 | point y+-1, or multiply y by nextafter(1,+-inf) in chopped | 
|---|
| 372 | mode. | 
|---|
| 373 |  | 
|---|
| 374 | R := RZ;                ... set rounding mode to round-toward-zero | 
|---|
| 375 | switch(r) { | 
|---|
| 376 | case RN:            ... round-to-nearest | 
|---|
| 377 | if(x<= z*(z-ulp)...chopped) z = z - ulp; else | 
|---|
| 378 | if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; | 
|---|
| 379 | break; | 
|---|
| 380 | case RZ:case RM:    ... round-to-zero or round-to--inf | 
|---|
| 381 | R:=RP;           ... reset rounding mod to round-to-+inf | 
|---|
| 382 | if(x<z*z ... rounded up) z = z - ulp; else | 
|---|
| 383 | if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; | 
|---|
| 384 | break; | 
|---|
| 385 | case RP:            ... round-to-+inf | 
|---|
| 386 | if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else | 
|---|
| 387 | if(x>z*z ...chopped) z = z+ulp; | 
|---|
| 388 | break; | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 | Remark 3. The above comparisons can be done in fixed point. For | 
|---|
| 392 | example, to compare x and w=z*z chopped, it suffices to compare | 
|---|
| 393 | x1 and w1 (the trailing parts of x and w), regarding them as | 
|---|
| 394 | two's complement integers. | 
|---|
| 395 |  | 
|---|
| 396 | ...Is z an exact square root? | 
|---|
| 397 | To determine whether z is an exact square root of x, let z1 be the | 
|---|
| 398 | trailing part of z, and also let x0 and x1 be the leading and | 
|---|
| 399 | trailing parts of x. | 
|---|
| 400 |  | 
|---|
| 401 | If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 | 
|---|
| 402 | I := 1;             ... Raise Inexact flag: z is not exact | 
|---|
| 403 | else { | 
|---|
| 404 | j := 1 - [(x0>>20)&1]       ... j = logb(x) mod 2 | 
|---|
| 405 | k := z1 >> 26;              ... get z's 25-th and 26-th | 
|---|
| 406 | fraction bits | 
|---|
| 407 | I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); | 
|---|
| 408 | } | 
|---|
| 409 | R:= r           ... restore rounded mode | 
|---|
| 410 | return sqrt(x):=z. | 
|---|
| 411 |  | 
|---|
| 412 | If multiplication is cheaper then the foregoing red tape, the | 
|---|
| 413 | Inexact flag can be evaluated by | 
|---|
| 414 |  | 
|---|
| 415 | I := i; | 
|---|
| 416 | I := (z*z!=x) or I. | 
|---|
| 417 |  | 
|---|
| 418 | Note that z*z can overwrite I; this value must be sensed if it is | 
|---|
| 419 | True. | 
|---|
| 420 |  | 
|---|
| 421 | Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be | 
|---|
| 422 | zero. | 
|---|
| 423 |  | 
|---|
| 424 | -------------------- | 
|---|
| 425 | z1: |        f2        | | 
|---|
| 426 | -------------------- | 
|---|
| 427 | bit 31             bit 0 | 
|---|
| 428 |  | 
|---|
| 429 | Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd | 
|---|
| 430 | or even of logb(x) have the following relations: | 
|---|
| 431 |  | 
|---|
| 432 | ------------------------------------------------- | 
|---|
| 433 | bit 27,26 of z1         bit 1,0 of x1   logb(x) | 
|---|
| 434 | ------------------------------------------------- | 
|---|
| 435 | 00                      00              odd and even | 
|---|
| 436 | 01                      01              even | 
|---|
| 437 | 10                      10              odd | 
|---|
| 438 | 10                      00              even | 
|---|
| 439 | 11                      01              even | 
|---|
| 440 | ------------------------------------------------- | 
|---|
| 441 |  | 
|---|
| 442 | (4) Special cases (see (4) of Section A). | 
|---|
| 443 |  | 
|---|
| 444 | */ | 
|---|