| 1 | /* | 
|---|
| 2 |  * ==================================================== | 
|---|
| 3 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|---|
| 4 |  * | 
|---|
| 5 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|---|
| 6 |  * Permission to use, copy, modify, and distribute this | 
|---|
| 7 |  * software is freely granted, provided that this notice | 
|---|
| 8 |  * is preserved. | 
|---|
| 9 |  * ==================================================== | 
|---|
| 10 |  */ | 
|---|
| 11 |  | 
|---|
| 12 | /* | 
|---|
| 13 |  * Modified for ALMOS-MKH OS at UPMC, France, August 2018. (Alain Greiner) | 
|---|
| 14 |  */ | 
|---|
| 15 |  | 
|---|
| 16 | /* | 
|---|
| 17 |  * __kernel_cos( x,  y ) | 
|---|
| 18 |  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 | 
|---|
| 19 |  * Input x is assumed to be bounded by ~pi/4 in magnitude. | 
|---|
| 20 |  * Input y is the tail of x. | 
|---|
| 21 |  * | 
|---|
| 22 |  * Algorithm | 
|---|
| 23 |  *      1. Since cos(-x) = cos(x), we need only to consider positive x. | 
|---|
| 24 |  *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. | 
|---|
| 25 |  *      3. cos(x) is approximated by a polynomial of degree 14 on | 
|---|
| 26 |  *         [0,pi/4] | 
|---|
| 27 |  *                                       4            14 | 
|---|
| 28 |  *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x | 
|---|
| 29 |  *         where the remez error is | 
|---|
| 30 |  * | 
|---|
| 31 |  *      |              2     4     6     8     10    12     14 |     -58 | 
|---|
| 32 |  *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2 | 
|---|
| 33 |  *      |                                                      | | 
|---|
| 34 |  * | 
|---|
| 35 |  *                     4     6     8     10    12     14 | 
|---|
| 36 |  *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then | 
|---|
| 37 |  *             cos(x) = 1 - x*x/2 + r | 
|---|
| 38 |  *         since cos(x+y) ~ cos(x) - sin(x)*y | 
|---|
| 39 |  *                        ~ cos(x) - x*y, | 
|---|
| 40 |  *         a correction term is necessary in cos(x) and hence | 
|---|
| 41 |  *              cos(x+y) = 1 - (x*x/2 - (r - x*y)) | 
|---|
| 42 |  *         For better accuracy when x > 0.3, let qx = |x|/4 with | 
|---|
| 43 |  *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. | 
|---|
| 44 |  *         Then | 
|---|
| 45 |  *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). | 
|---|
| 46 |  *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the | 
|---|
| 47 |  *         magnitude of the latter is at least a quarter of x*x/2, | 
|---|
| 48 |  *         thus, reducing the rounding error in the subtraction. | 
|---|
| 49 |  */ | 
|---|
| 50 |  | 
|---|
| 51 | #include "math.h" | 
|---|
| 52 | #include "math_private.h" | 
|---|
| 53 |  | 
|---|
| 54 | static const double | 
|---|
| 55 | one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | 
|---|
| 56 | C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ | 
|---|
| 57 | C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ | 
|---|
| 58 | C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ | 
|---|
| 59 | C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ | 
|---|
| 60 | C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ | 
|---|
| 61 | C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ | 
|---|
| 62 |  | 
|---|
| 63 | double __kernel_cos(double x, double y) | 
|---|
| 64 | { | 
|---|
| 65 |         double a,hz,z,r,qx; | 
|---|
| 66 |         int32_t ix; | 
|---|
| 67 |         GET_HIGH_WORD(ix,x); | 
|---|
| 68 |         ix &= 0x7fffffff;                       /* ix = |x|'s high word*/ | 
|---|
| 69 |         if(ix<0x3e400000) {                     /* if x < 2**27 */ | 
|---|
| 70 |             if(((int)x)==0) return one;         /* generate inexact */ | 
|---|
| 71 |         } | 
|---|
| 72 |         z  = x*x; | 
|---|
| 73 |         r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); | 
|---|
| 74 |         if(ix < 0x3FD33333)                     /* if |x| < 0.3 */ | 
|---|
| 75 |             return one - (0.5*z - (z*r - x*y)); | 
|---|
| 76 |         else { | 
|---|
| 77 |             if(ix > 0x3fe90000) {               /* x > 0.78125 */ | 
|---|
| 78 |                 qx = 0.28125; | 
|---|
| 79 |             } else { | 
|---|
| 80 |                 INSERT_WORDS(qx,ix-0x00200000,0);       /* x/4 */ | 
|---|
| 81 |             } | 
|---|
| 82 |             hz = 0.5*z-qx; | 
|---|
| 83 |             a  = one-qx; | 
|---|
| 84 |             return a - (hz - (z*r-x*y)); | 
|---|
| 85 |         } | 
|---|
| 86 | } | 
|---|