1 | /* |
---|
2 | * ==================================================== |
---|
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
4 | * |
---|
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
6 | * Permission to use, copy, modify, and distribute this |
---|
7 | * software is freely granted, provided that this notice |
---|
8 | * is preserved. |
---|
9 | * ==================================================== |
---|
10 | */ |
---|
11 | |
---|
12 | /* |
---|
13 | * Modified for ALMOS-MKH OS at UPMC, France, August 2018. (Alain Greiner) |
---|
14 | */ |
---|
15 | |
---|
16 | /* |
---|
17 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
---|
18 | * double x[],y[]; int e0,nx,prec; int ipio2[]; |
---|
19 | * |
---|
20 | * __kernel_rem_pio2 return the last three digits of N with |
---|
21 | * y = x - N*pi/2 |
---|
22 | * so that |y| < pi/2. |
---|
23 | * |
---|
24 | * The method is to compute the integer (mod 8) and fraction parts of |
---|
25 | * (2/pi)*x without doing the full multiplication. In general we |
---|
26 | * skip the part of the product that are known to be a huge integer ( |
---|
27 | * more accurately, = 0 mod 8 ). Thus the number of operations are |
---|
28 | * independent of the exponent of the input. |
---|
29 | * |
---|
30 | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
---|
31 | * |
---|
32 | * Input parameters: |
---|
33 | * x[] The input value (must be positive) is broken into nx |
---|
34 | * pieces of 24-bit integers in double precision format. |
---|
35 | * x[i] will be the i-th 24 bit of x. The scaled exponent |
---|
36 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
---|
37 | * match x's up to 24 bits. |
---|
38 | * |
---|
39 | * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
---|
40 | * e0 = ilogb(z)-23 |
---|
41 | * z = scalbn(z,-e0) |
---|
42 | * for i = 0,1,2 |
---|
43 | * x[i] = floor(z) |
---|
44 | * z = (z-x[i])*2**24 |
---|
45 | * |
---|
46 | * |
---|
47 | * y[] ouput result in an array of double precision numbers. |
---|
48 | * The dimension of y[] is: |
---|
49 | * 24-bit precision 1 |
---|
50 | * 53-bit precision 2 |
---|
51 | * 64-bit precision 2 |
---|
52 | * 113-bit precision 3 |
---|
53 | * The actual value is the sum of them. Thus for 113-bit |
---|
54 | * precison, one may have to do something like: |
---|
55 | * |
---|
56 | * long double t,w,r_head, r_tail; |
---|
57 | * t = (long double)y[2] + (long double)y[1]; |
---|
58 | * w = (long double)y[0]; |
---|
59 | * r_head = t+w; |
---|
60 | * r_tail = w - (r_head - t); |
---|
61 | * |
---|
62 | * e0 The exponent of x[0] |
---|
63 | * |
---|
64 | * nx dimension of x[] |
---|
65 | * |
---|
66 | * prec an integer indicating the precision: |
---|
67 | * 0 24 bits (single) |
---|
68 | * 1 53 bits (double) |
---|
69 | * 2 64 bits (extended) |
---|
70 | * 3 113 bits (quad) |
---|
71 | * |
---|
72 | * ipio2[] |
---|
73 | * integer array, contains the (24*i)-th to (24*i+23)-th |
---|
74 | * bit of 2/pi after binary point. The corresponding |
---|
75 | * floating value is |
---|
76 | * |
---|
77 | * ipio2[i] * 2^(-24(i+1)). |
---|
78 | * |
---|
79 | * External function: |
---|
80 | * double scalbn(), floor(); |
---|
81 | * |
---|
82 | * |
---|
83 | * Here is the description of some local variables: |
---|
84 | * |
---|
85 | * jk jk+1 is the initial number of terms of ipio2[] needed |
---|
86 | * in the computation. The recommended value is 2,3,4, |
---|
87 | * 6 for single, double, extended,and quad. |
---|
88 | * |
---|
89 | * jz local integer variable indicating the number of |
---|
90 | * terms of ipio2[] used. |
---|
91 | * |
---|
92 | * jx nx - 1 |
---|
93 | * |
---|
94 | * jv index for pointing to the suitable ipio2[] for the |
---|
95 | * computation. In general, we want |
---|
96 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
---|
97 | * is an integer. Thus |
---|
98 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
---|
99 | * Hence jv = max(0,(e0-3)/24). |
---|
100 | * |
---|
101 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
---|
102 | * |
---|
103 | * q[] double array with integral value, representing the |
---|
104 | * 24-bits chunk of the product of x and 2/pi. |
---|
105 | * |
---|
106 | * q0 the corresponding exponent of q[0]. Note that the |
---|
107 | * exponent for q[i] would be q0-24*i. |
---|
108 | * |
---|
109 | * PIo2[] double precision array, obtained by cutting pi/2 |
---|
110 | * into 24 bits chunks. |
---|
111 | * |
---|
112 | * f[] ipio2[] in floating point |
---|
113 | * |
---|
114 | * iq[] integer array by breaking up q[] in 24-bits chunk. |
---|
115 | * |
---|
116 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
---|
117 | * |
---|
118 | * ih integer. If >0 it indicates q[] is >= 0.5, hence |
---|
119 | * it also indicates the *sign* of the result. |
---|
120 | * |
---|
121 | */ |
---|
122 | |
---|
123 | |
---|
124 | /* |
---|
125 | * Constants: |
---|
126 | * The hexadecimal values are the intended ones for the following |
---|
127 | * constants. The decimal values may be used, provided that the |
---|
128 | * compiler will convert from decimal to binary accurately enough |
---|
129 | * to produce the hexadecimal values shown. |
---|
130 | */ |
---|
131 | |
---|
132 | #include "math.h" |
---|
133 | #include "math_private.h" |
---|
134 | |
---|
135 | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
---|
136 | |
---|
137 | static const double PIo2[] = { |
---|
138 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
---|
139 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
---|
140 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
---|
141 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
---|
142 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
---|
143 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
---|
144 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
---|
145 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
---|
146 | }; |
---|
147 | |
---|
148 | static const double |
---|
149 | zero = 0.0, |
---|
150 | one = 1.0, |
---|
151 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
---|
152 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
---|
153 | |
---|
154 | int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) |
---|
155 | { |
---|
156 | int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
---|
157 | double z,fw,f[20],fq[20],q[20]; |
---|
158 | |
---|
159 | /* initialize jk*/ |
---|
160 | jk = init_jk[prec]; |
---|
161 | jp = jk; |
---|
162 | |
---|
163 | /* determine jx,jv,q0, note that 3>q0 */ |
---|
164 | jx = nx-1; |
---|
165 | jv = (e0-3)/24; if(jv<0) jv=0; |
---|
166 | q0 = e0-24*(jv+1); |
---|
167 | |
---|
168 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
---|
169 | j = jv-jx; m = jx+jk; |
---|
170 | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; |
---|
171 | |
---|
172 | /* compute q[0],q[1],...q[jk] */ |
---|
173 | for (i=0;i<=jk;i++) { |
---|
174 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
---|
175 | } |
---|
176 | |
---|
177 | jz = jk; |
---|
178 | recompute: |
---|
179 | /* distill q[] into iq[] reversingly */ |
---|
180 | for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
---|
181 | fw = (double)((int32_t)(twon24* z)); |
---|
182 | iq[i] = (int32_t)(z-two24*fw); |
---|
183 | z = q[j-1]+fw; |
---|
184 | } |
---|
185 | |
---|
186 | /* compute n */ |
---|
187 | z = scalbn(z,q0); /* actual value of z */ |
---|
188 | z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
---|
189 | n = (int32_t) z; |
---|
190 | z -= (double)n; |
---|
191 | ih = 0; |
---|
192 | if(q0>0) { /* need iq[jz-1] to determine n */ |
---|
193 | i = (iq[jz-1]>>(24-q0)); n += i; |
---|
194 | iq[jz-1] -= i<<(24-q0); |
---|
195 | ih = iq[jz-1]>>(23-q0); |
---|
196 | } |
---|
197 | else if(q0==0) ih = iq[jz-1]>>23; |
---|
198 | else if(z>=0.5) ih=2; |
---|
199 | |
---|
200 | if(ih>0) { /* q > 0.5 */ |
---|
201 | n += 1; carry = 0; |
---|
202 | for(i=0;i<jz ;i++) { /* compute 1-q */ |
---|
203 | j = iq[i]; |
---|
204 | if(carry==0) { |
---|
205 | if(j!=0) { |
---|
206 | carry = 1; iq[i] = 0x1000000- j; |
---|
207 | } |
---|
208 | } else iq[i] = 0xffffff - j; |
---|
209 | } |
---|
210 | if(q0>0) { /* rare case: chance is 1 in 12 */ |
---|
211 | switch(q0) { |
---|
212 | case 1: |
---|
213 | iq[jz-1] &= 0x7fffff; break; |
---|
214 | case 2: |
---|
215 | iq[jz-1] &= 0x3fffff; break; |
---|
216 | } |
---|
217 | } |
---|
218 | if(ih==2) { |
---|
219 | z = one - z; |
---|
220 | if(carry!=0) z -= scalbn(one,q0); |
---|
221 | } |
---|
222 | } |
---|
223 | |
---|
224 | /* check if recomputation is needed */ |
---|
225 | if(z==zero) { |
---|
226 | j = 0; |
---|
227 | for (i=jz-1;i>=jk;i--) j |= iq[i]; |
---|
228 | if(j==0) { /* need recomputation */ |
---|
229 | for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
---|
230 | |
---|
231 | for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
---|
232 | f[jx+i] = (double) ipio2[jv+i]; |
---|
233 | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
---|
234 | q[i] = fw; |
---|
235 | } |
---|
236 | jz += k; |
---|
237 | goto recompute; |
---|
238 | } |
---|
239 | } |
---|
240 | |
---|
241 | /* chop off zero terms */ |
---|
242 | if(z==0.0) { |
---|
243 | jz -= 1; q0 -= 24; |
---|
244 | while(iq[jz]==0) { jz--; q0-=24;} |
---|
245 | } else { /* break z into 24-bit if necessary */ |
---|
246 | z = scalbn(z,-q0); |
---|
247 | if(z>=two24) { |
---|
248 | fw = (double)((int32_t)(twon24*z)); |
---|
249 | iq[jz] = (int32_t)(z-two24*fw); |
---|
250 | jz += 1; q0 += 24; |
---|
251 | iq[jz] = (int32_t) fw; |
---|
252 | } else iq[jz] = (int32_t) z ; |
---|
253 | } |
---|
254 | |
---|
255 | /* convert integer "bit" chunk to floating-point value */ |
---|
256 | fw = scalbn(one,q0); |
---|
257 | for(i=jz;i>=0;i--) { |
---|
258 | q[i] = fw*(double)iq[i]; fw*=twon24; |
---|
259 | } |
---|
260 | |
---|
261 | /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
---|
262 | for(i=jz;i>=0;i--) { |
---|
263 | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
---|
264 | fq[jz-i] = fw; |
---|
265 | } |
---|
266 | |
---|
267 | /* compress fq[] into y[] */ |
---|
268 | switch(prec) { |
---|
269 | case 0: |
---|
270 | fw = 0.0; |
---|
271 | for (i=jz;i>=0;i--) fw += fq[i]; |
---|
272 | y[0] = (ih==0)? fw: -fw; |
---|
273 | break; |
---|
274 | case 1: |
---|
275 | case 2: |
---|
276 | fw = 0.0; |
---|
277 | for (i=jz;i>=0;i--) fw += fq[i]; |
---|
278 | y[0] = (ih==0)? fw: -fw; |
---|
279 | fw = fq[0]-fw; |
---|
280 | for (i=1;i<=jz;i++) fw += fq[i]; |
---|
281 | y[1] = (ih==0)? fw: -fw; |
---|
282 | break; |
---|
283 | case 3: /* painful */ |
---|
284 | for (i=jz;i>0;i--) { |
---|
285 | fw = fq[i-1]+fq[i]; |
---|
286 | fq[i] += fq[i-1]-fw; |
---|
287 | fq[i-1] = fw; |
---|
288 | } |
---|
289 | for (i=jz;i>1;i--) { |
---|
290 | fw = fq[i-1]+fq[i]; |
---|
291 | fq[i] += fq[i-1]-fw; |
---|
292 | fq[i-1] = fw; |
---|
293 | } |
---|
294 | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
---|
295 | if(ih==0) { |
---|
296 | y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
---|
297 | } else { |
---|
298 | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
---|
299 | } |
---|
300 | } |
---|
301 | return n&7; |
---|
302 | } |
---|