1 | /* |
---|
2 | * ==================================================== |
---|
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
4 | * |
---|
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
6 | * Permission to use, copy, modify, and distribute this |
---|
7 | * software is freely granted, provided that this notice |
---|
8 | * is preserved. |
---|
9 | * ==================================================== |
---|
10 | */ |
---|
11 | |
---|
12 | /* |
---|
13 | * Modified for ALMOS-MKH OS at UPMC, France, August 2018. (Alain Greiner) |
---|
14 | */ |
---|
15 | |
---|
16 | /* __kernel_sin( x, y, iy) |
---|
17 | * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
---|
18 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
---|
19 | * Input y is the tail of x. |
---|
20 | * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). |
---|
21 | * |
---|
22 | * Algorithm |
---|
23 | * 1. Since sin(-x) = -sin(x), we need only to consider positive x. |
---|
24 | * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. |
---|
25 | * 3. sin(x) is approximated by a polynomial of degree 13 on |
---|
26 | * [0,pi/4] |
---|
27 | * 3 13 |
---|
28 | * sin(x) ~ x + S1*x + ... + S6*x |
---|
29 | * where |
---|
30 | * |
---|
31 | * |sin(x) 2 4 6 8 10 12 | -58 |
---|
32 | * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
---|
33 | * | x | |
---|
34 | * |
---|
35 | * 4. sin(x+y) = sin(x) + sin'(x')*y |
---|
36 | * ~ sin(x) + (1-x*x/2)*y |
---|
37 | * For better accuracy, let |
---|
38 | * 3 2 2 2 2 |
---|
39 | * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) |
---|
40 | * then 3 2 |
---|
41 | * sin(x) = x + (S1*x + (x *(r-y/2)+y)) |
---|
42 | */ |
---|
43 | |
---|
44 | #include "math.h" |
---|
45 | #include "math_private.h" |
---|
46 | |
---|
47 | static const double |
---|
48 | half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
---|
49 | S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ |
---|
50 | S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ |
---|
51 | S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ |
---|
52 | S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ |
---|
53 | S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ |
---|
54 | S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ |
---|
55 | |
---|
56 | double __kernel_sin(double x, double y, int iy) |
---|
57 | { |
---|
58 | double z,r,v; |
---|
59 | int32_t ix; |
---|
60 | GET_HIGH_WORD(ix,x); |
---|
61 | ix &= 0x7fffffff; /* high word of x */ |
---|
62 | if(ix<0x3e400000) /* |x| < 2**-27 */ |
---|
63 | {if((int)x==0) return x;} /* generate inexact */ |
---|
64 | z = x*x; |
---|
65 | v = z*x; |
---|
66 | r = S2+z*(S3+z*(S4+z*(S5+z*S6))); |
---|
67 | if(iy==0) return x+v*(S1+z*r); |
---|
68 | else return x-((z*(half*y-v*r)-y)-v*S1); |
---|
69 | } |
---|