source: trunk/libs/libpthread/pthread.c @ 634

Last change on this file since 634 was 619, checked in by alain, 6 years ago

1) Fix a bug in KSH : after the "load" command,

the [ksh] prompt is now printed after completion
of the loaded application.

2) Fix a bug in vmm_handle_cow() : the copy-on-write

use now a hal_remote_memcpy() to replicate the page content.


File size: 17.0 KB
Line 
1/*
2 * pthread.c - User level <pthread> library implementation.
3 *
4 * Author     Alain Greiner (2016,2017,2018,2019)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include <hal_user.h>
25#include <hal_shared_types.h>
26#include <stdio.h>
27#include <stdlib.h>
28#include <pthread.h>
29#include <shared_pthread.h>
30#include <almosmkh.h>
31#include <syscalls_numbers.h>
32
33
34////////////////////////////////////////////////////////////////////////////////////////////
35//                  Threads
36////////////////////////////////////////////////////////////////////////////////////////////
37
38/////////////////////////////////////////////////
39int pthread_create( pthread_t            * trdid,
40                    const pthread_attr_t * attr,
41                    void                 * start_func,
42                    void                 * start_args )
43{
44    return hal_user_syscall( SYS_THREAD_CREATE,
45                             (reg_t)trdid,
46                             (reg_t)attr,
47                             (reg_t)start_func,
48                             (reg_t)start_args );
49}
50
51/////////////////////////////////////
52int pthread_join( pthread_t    trdid,
53                  void      ** exit_value )
54{
55    return hal_user_syscall( SYS_THREAD_JOIN,
56                             (reg_t)trdid,
57                             (reg_t)exit_value, 0, 0 );
58}
59
60///////////////////////////////////////
61int pthread_detach( pthread_t   trdid )
62{
63    return hal_user_syscall( SYS_THREAD_DETACH,
64                             (reg_t)trdid, 0, 0, 0 );
65}
66
67/////////////////////////////////////
68int pthread_exit( void * exit_value )
69{
70    return hal_user_syscall( SYS_THREAD_EXIT,
71                             (reg_t)exit_value, 0, 0, 0 );
72}
73
74/////////////////////////
75int pthread_yield( void )
76{
77    return hal_user_syscall( SYS_THREAD_YIELD, 0, 0, 0, 0 );
78}
79
80////////////////////////////////////////////////////////////////////////////////////////////
81//                               Mutexes
82////////////////////////////////////////////////////////////////////////////////////////////
83
84//////////////////////////////////////////////////////////
85int pthread_mutex_init( pthread_mutex_t           * mutex,
86                        const pthread_mutexattr_t * attr )
87{
88    if( attr != NULL )
89    {
90        printf("\n[ERROR] in %s : <attr> argument not supported\n", __FUNCTION__);
91        return -1;
92    }
93
94    return hal_user_syscall( SYS_MUTEX,
95                             (reg_t)mutex,
96                             MUTEX_INIT,
97                             0, 0 );
98}
99
100////////////////////////////////////////////////////
101int pthread_mutex_destroy( pthread_mutex_t * mutex )
102{
103    return hal_user_syscall( SYS_MUTEX,
104                             (reg_t)mutex,
105                             MUTEX_DESTROY,
106                             0, 0 );
107}
108
109/////////////////////////////////////////////////
110int pthread_mutex_lock( pthread_mutex_t * mutex ) 
111{
112    return hal_user_syscall( SYS_MUTEX,
113                             (reg_t)mutex,
114                             MUTEX_LOCK,
115                             0, 0 );
116}
117
118////////////////////////////////////////////////////
119int pthread_mutex_trylock( pthread_mutex_t * mutex )
120{
121    return hal_user_syscall( SYS_MUTEX,
122                             (reg_t)mutex,
123                             MUTEX_TRYLOCK,
124                             0, 0 );
125}
126   
127///////////////////////////////////////////////////
128int pthread_mutex_unlock( pthread_mutex_t * mutex )
129{
130    return hal_user_syscall( SYS_MUTEX,
131                             (reg_t)mutex,
132                             MUTEX_UNLOCK,
133                             0, 0 );
134}
135
136////////////////////////////////////////////////////////////////////////////////////////////
137//                               Condvars
138////////////////////////////////////////////////////////////////////////////////////////////
139
140///////////////////////////////////////////////
141int pthread_cond_init( pthread_cond_t     * cond,
142                       pthread_condattr_t * attr )
143{
144    if( attr )
145    {
146        printf("[ERROR] in %s ; <attr> argument must be NULL\n", __FUNCTION__ );
147        return -1;
148    }
149
150   return hal_user_syscall( SYS_CONDVAR,
151                             (reg_t)cond,
152                             CONDVAR_INIT,
153                             0, 0 );
154}
155
156/////////////////////////////////////////////////
157int pthread_cond_destroy( pthread_cond_t * cond )
158{
159    return hal_user_syscall( SYS_CONDVAR,
160                             (reg_t)cond,
161                             CONDVAR_DESTROY,
162                             0, 0 );
163}
164
165//////////////////////////////////////////////
166int pthread_cond_wait( pthread_cond_t  * cond,
167                       pthread_mutex_t * mutex )
168{
169    return hal_user_syscall( SYS_CONDVAR,
170                             (reg_t)cond,
171                             CONDVAR_WAIT,
172                             (reg_t)mutex,
173                             0 );
174}
175
176////////////////////////////////////////////////
177int pthread_cond_signal( pthread_cond_t * cond )
178{
179    return hal_user_syscall( SYS_CONDVAR,
180                             (reg_t)cond,
181                             CONDVAR_SIGNAL,
182                             0, 0 );
183}
184
185///////////////////////////////////////////////////
186int pthread_cond_broadcast( pthread_cond_t * cond )
187{
188    return hal_user_syscall( SYS_CONDVAR,
189                             (reg_t)cond,
190                             CONDVAR_BROADCAST,
191                             0, 0 );
192}
193
194
195////////////////////////////////////////////////////////////////////////////////////////////
196//                            Barriers
197////////////////////////////////////////////////////////////////////////////////////////////
198
199////////////////////////////////////////////////////////////////
200int pthread_barrier_init( pthread_barrier_t           * barrier,
201                          const pthread_barrierattr_t * attr,
202                          unsigned int                  count )
203{ 
204    return hal_user_syscall( SYS_BARRIER,
205                             (reg_t)barrier,
206                             BARRIER_INIT,
207                             (reg_t)count,
208                             (reg_t)attr );
209}
210
211//////////////////////////////////////////////////////////
212int pthread_barrier_destroy( pthread_barrier_t * barrier )
213{
214    return hal_user_syscall( SYS_BARRIER,
215                             (reg_t)barrier,
216                             BARRIER_DESTROY,
217                             0, 0 );
218}
219   
220///////////////////////////////////////////////////////
221int pthread_barrier_wait( pthread_barrier_t * barrier )
222{
223    return hal_user_syscall( SYS_BARRIER,
224                             (reg_t)barrier,
225                             BARRIER_WAIT,
226                             0, 0 );
227}
228
229/*
230
231////////////////////////////////////////////////////////////////////////////////////////////
232// The following functions define another implementation for the POSX barrier
233// based on a distributed quadtree implemented in user space, and relying
234// on a busy waiting policy.
235////////////////////////////////////////////////////////////////////////////////////////////
236
237
238////////////////////////////////////////////////////////////////////////////////////////////
239// This recursive function initializes the SQT nodes
240// traversing the SQT from root to bottom
241////////////////////////////////////////////////////////////////////////////////////////////
242static void sqt_barrier_build( pthread_barrier_t  * barrier,
243                               unsigned int         x,
244                               unsigned int         y,
245                               unsigned int         level,
246                               sqt_node_t         * parent,
247                               unsigned int         x_size,
248                               unsigned int         y_size,
249                               unsigned int         nthreads )
250{
251    // get target node address
252    sqt_node_t * node = barrier->node[x][y][level];
253   
254    if (level == 0 )        // terminal case
255    {
256        // initializes target node
257        node->arity    = nthreads;   
258        node->count    = nthreads;   
259        node->sense    = 0;   
260        node->level    = 0;   
261        node->parent   = parent;
262        node->child[0] = NULL;
263        node->child[1] = NULL;
264        node->child[2] = NULL;
265        node->child[3] = NULL;
266
267#if PTHREAD_BARRIER_DEBUG
268printf("\n[BARRIER] %s : sqt_node[%d][%d][%d] / arity %d / desc %x\n"
269"parent %x / child0 %x / child1 %x / child2 %x / child3 %x\n",
270__FUNCTION__, x, y, level, node->arity, node, node->parent,
271node->child[0], node->child[1], node->child[2], node->child[3] );
272#endif
273
274    }
275    else                   // non terminal case
276    {
277        unsigned int cx[4];   // x coordinate for children
278        unsigned int cy[4];   // y coordinate for children
279        unsigned int arity = 0;
280        unsigned int i;
281
282        // the child0 coordinates are equal to the parent coordinates
283        // other children coordinates are incremented depending on the level value
284        cx[0] = x;
285        cy[0] = y;
286
287        cx[1] = x;
288        cy[1] = y + (1 << (level-1));
289
290        cx[2] = x + (1 << (level-1));
291        cy[2] = y;
292
293        cx[3] = x + (1 << (level-1));
294        cy[3] = y + (1 << (level-1));
295
296        // initializes parent node taken into account the actual number of childs
297        // child pointer is NULL if coordinates outside the mesh
298        for ( i = 0 ; i < 4 ; i++ )
299        {
300            if ( (cx[i] < x_size) && (cy[i] < y_size) )
301            {
302                node->child[i] = barrier->node[cx[i]][cy[i]][level-1];
303                arity++;
304            }
305            else  node->child[i] = NULL;
306        }
307        node->arity    = arity; 
308        node->count    = arity;
309        node->sense    = 0;
310        node->level    = level;
311        node->parent   = parent;
312
313#if PTHREAD_BARRIER_DEBUG
314printf("\n[BARRIER] %s : sqt_node[%d][%d][%d] / arity %d / desc %x\n"
315"parent %x / child0 %x / child1 %x / child2 %x / child3 %x\n",
316__FUNCTION__, x, y, level, node->arity, node, node->parent,
317node->child[0], node->child[1], node->child[2], node->child[3] );
318#endif
319
320        // recursive calls for children nodes
321        for ( i = 0 ; i < 4 ; i++ )
322        {
323            if ( (cx[i] < x_size) && (cy[i] < y_size) )
324            sqt_barrier_build( barrier,
325                               cx[i],
326                               cy[i],
327                               level-1,
328                               node,
329                               x_size,
330                               y_size,
331                               nthreads );
332        }
333    }
334}  // end sqt_barrier_build()
335
336////////////////////////////////////////////////////////////////
337int pthread_barrier_init( pthread_barrier_t           * barrier,
338                          const pthread_barrierattr_t * attr,
339                          unsigned int                  count )
340{
341    unsigned int x_size;
342    unsigned int y_size;
343    unsigned int nthreads;
344
345    if( attr != NULL )
346    {
347        x_size   = attr->x_size;
348        y_size   = attr->y_size;
349        nthreads = attr->nthreads;
350    }
351    else
352    {
353        x_size   = 1;
354        y_size   = 1;
355        nthreads = count;
356    }
357
358    // check attributes / count
359    if( (x_size * y_size * nthreads) != count )
360    {
361        printf("\[ERROR] in %s : count != x_size * y_size * nthreads/n", __FUNCTION__);
362        exit( EXIT_FAILURE );
363    }
364   
365    // compute SQT levels
366    unsigned int levels;
367    unsigned int z = (x_size > y_size) ? x_size : y_size;
368    levels = (z < 2) ? 1 : (z < 3) ? 2 : (z < 5) ? 3 : (z < 9) ? 4 : 5;
369
370#if PTHREAD_BARRIER_DEBUG
371unsigned int side = (z < 2) ? 1 : (z < 3) ? 2 : (z < 5) ? 4 : (z < 9) ? 8 : 16;
372printf("\n[BARRIER] %s : x_size = %d / y_size = %d / levels = %d / side = %d\n",
373__FUNCTION__ , x_size , y_size , levels , side );
374#endif
375
376    // allocates memory for the SQT nodes and initializes SQT nodes pointers array
377    // the actual number of SQT nodes in a cluster(x,y) depends on (x,y):
378    // At least 1 node / at most 5 nodes
379    unsigned int x;          // x coordinate for one SQT node
380    unsigned int y;          // y coordinate for one SQT node
381    unsigned int l;          // level for one SQT node
382    for ( x = 0 ; x < x_size ; x++ )
383    {
384        for ( y = 0 ; y < y_size ; y++ )
385        {
386            unsigned int cxy = (x<<QDT_YWIDTH) + y;
387               
388            for ( l = 0 ; l < levels ; l++ )         
389            {
390                if ( ( (l == 0) && ((x&0x00) == 0) && ((y&0x00) == 0) ) ||
391                     ( (l == 1) && ((x&0x01) == 0) && ((y&0x01) == 0) ) ||
392                     ( (l == 2) && ((x&0x03) == 0) && ((y&0x03) == 0) ) ||
393                     ( (l == 3) && ((x&0x07) == 0) && ((y&0x07) == 0) ) ||
394                     ( (l == 4) && ((x&0x0F) == 0) && ((y&0x0F) == 0) ) )
395                 {
396                     sqt_node_t * node = remote_malloc( sizeof(sqt_node_t) , cxy );
397
398                     if( node == NULL )
399                     {
400                         printf("\n[ERROR] in %s : cannot allocate sqt_node in cluster %x\n",
401                         __FUNCTION__ , cxy );
402                         return -1;
403                     }
404
405                     barrier->node[x][y][l] = node;
406
407                 }
408            }
409        }
410    }
411           
412    // recursively initialize all SQT nodes from root to bottom
413    sqt_barrier_build( barrier,
414                       0,       
415                       0,
416                       levels-1,
417                       NULL,
418                       x_size,
419                       y_size,
420                       nthreads );
421
422    hal_user_fence();
423
424    return 0;
425
426}  // end pthread_barrier_init
427
428//////////////////////////////////////////////////////////////////////////////////////////
429// This recursive function decrements the distributed "count" variables,
430// traversing the SQT from bottom to root.
431// The last arrived thread reset the local node before returning.
432//////////////////////////////////////////////////////////////////////////////////////////
433static void sqt_barrier_decrement( sqt_node_t * node )
434{
435
436#if PTHREAD_BARRIER_DEBUG
437unsigned int    cxy;
438unsigned int    lid;
439get_core( &cxy , &lid );
440printf("\n[BARRIER] %s : core[%x,%d] decrement SQT barrier node %x :\n"
441" level = %d / parent = %x / arity = %d / sense = %d / count = %d\n",
442__FUNCTION__ , cxy , lid , (unsigned int)node ,
443node->level , node->parent, node->arity , node->sense , node->count );
444#endif
445
446    unsigned int expected;
447   
448    // compute expected sense value
449    if ( node->sense == 0) expected = 1;
450    else                   expected = 0;
451
452    // atomically decrement count
453    int count = hal_user_atomic_add( (int *)&node->count , -1 );
454
455    // last arrived thread makes the recursive call
456    if ( count == 1 )                                     // last thread 
457    {
458        // decrement the parent node if the current node is not the root
459        if ( node->parent != NULL )  sqt_barrier_decrement( node->parent );
460
461#if PTHREAD_BARRIER_DEBUG
462printf("\n[BARRIER] %s : core[%x,%d] reset SQT barrier node %x :\n"
463" level = %d / arity = %d / sense = %d / count = %d\n",
464__FUNCTION__ , cxy , lid , (unsigned int)node ,
465node->level , node->arity , node->sense , node->count );
466#endif
467        // reset the current node
468        node->sense = expected;
469        node->count = node->arity;
470
471        return;
472    }
473    else                                               // not the last thread
474    {
475        while( 1 )
476        {
477            // poll sense
478            if( node->sense == expected ) break;
479
480            // deschedule
481            pthread_yield();
482        }
483
484        return;
485    }
486} // end sqt_barrier_decrement()
487   
488///////////////////////////////////////////////////////
489int pthread_barrier_wait( pthread_barrier_t * barrier )
490{
491    // get calling core cluster
492    unsigned int    cxy;
493    unsigned int    lid;
494    get_core( &cxy , &lid );
495
496    // get calling core coordinate
497    unsigned int    x = cxy >> QDT_YWIDTH;
498    unsigned int    y = cxy &  QDT_YMASK;
499
500#if PTHREAD_BARRIER_DEBUG
501printf("\n[BARRIER] %s : core[%x,%d] enter / barrier = %x / node = %x\n",
502__FUNCTION__ , cxy , lid , barrier, barrier->node[x][y][0] );
503#endif
504
505    // recursively decrement count from bottom to root
506    sqt_barrier_decrement( barrier->node[x][y][0] );
507
508    hal_user_fence();
509
510    return 0;
511
512}  // end pthread_barrier_wait()
513
514*/
515
516
517
518// Local Variables:
519// tab-width: 4
520// c-basic-offset: 4
521// c-file-offsets:((innamespace . 0)(inline-open . 0))
522// indent-tabs-mode: nil
523// End:
524// vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4
525
Note: See TracBrowser for help on using the repository browser.