source: trunk/libs/newlib/src/newlib/libm/machine/spu/headers/acosd2.h @ 444

Last change on this file since 444 was 444, checked in by satin@…, 6 years ago

add newlib,libalmos-mkh, restructure shared_syscalls.h and mini-libc

File size: 6.6 KB
Line 
1/* --------------------------------------------------------------  */
2/* (C)Copyright 2006,2008,                                         */
3/* International Business Machines Corporation                     */
4/* All Rights Reserved.                                            */
5/*                                                                 */
6/* Redistribution and use in source and binary forms, with or      */
7/* without modification, are permitted provided that the           */
8/* following conditions are met:                                   */
9/*                                                                 */
10/* - Redistributions of source code must retain the above copyright*/
11/*   notice, this list of conditions and the following disclaimer. */
12/*                                                                 */
13/* - Redistributions in binary form must reproduce the above       */
14/*   copyright notice, this list of conditions and the following   */
15/*   disclaimer in the documentation and/or other materials        */
16/*   provided with the distribution.                               */
17/*                                                                 */
18/* - Neither the name of IBM Corporation nor the names of its      */
19/*   contributors may be used to endorse or promote products       */
20/*   derived from this software without specific prior written     */
21/*   permission.                                                   */
22/*                                                                 */
23/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
24/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
25/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
26/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
27/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
28/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
29/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
30/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
31/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
32/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
33/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
34/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
35/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
36/* --------------------------------------------------------------  */
37/* PROLOG END TAG zYx                                              */
38#ifdef __SPU__
39
40#ifndef _ACOSD2_H_
41#define _ACOSD2_H_      1
42
43#include "simdmath.h"
44#include <spu_intrinsics.h>
45#include "sqrtd2.h"
46#include "divd2.h"
47
48/*
49 * FUNCTION
50 *      vector double _acosd2(vector double x)
51 *
52 * DESCRIPTION
53 *      Compute the arc cosine of the vector of double precision elements
54 *      specified by x, returning the resulting angles in radians. The input
55 *      elements are to be in the closed interval [-1, 1]. Values outside
56 *      this range result in a invalid operation execption being latched in
57 *      the FPSCR register and a NAN is returned.
58 *
59 *      The basic algorithm computes the arc cosine using PI/2 - asind2(x).
60 *      However, as |x| approaches 1, there is a cancellation error in
61 *      subtracting asind2(x) from PI/2, so we simplify the evaluation
62 *      instead of layering acosd2 on top of asind2.
63 *
64 *      This yields the basic algorithm of:
65 *
66 *         absx = (x < 0.0) ? -x : x;
67 *       
68 *         if (absx > 0.5) {
69 *           if (x < 0) {
70 *             addend = SM_PI;
71 *             multiplier = -2.0;
72 *           } else {
73 *             addend = 0.0;
74 *             multiplier = 2.0;
75 *           }
76 *     
77 *           x = sqrt(-0.5 * absx + 0.5);
78 *         } else {
79 *           addend = SM_PI_2;
80 *           multiplier = -1.0;
81 *         }
82 *     
83 *          x2 = x * x;
84 *          x3 = x2 * x;
85 *
86 *          p = ((((P5 * x2 + P4)*x2 + P3)*x2 + P2)*x2 + P1)*x2 + P0;
87 *       
88 *          q = ((((Q5 * x2 + Q4)*x2 + Q3)*x2 + Q2)*x2 + Q1)*x2 + Q0;;
89 *     
90 *          pq = p / q;
91 *     
92 *          result = (x3*pq + x)*multiplier - addend;
93 *
94 *      Where P5-P0 and Q5-Q0 are the polynomial coeficients. See asind2
95 *      for additional details.
96 */
97static __inline vector double _acosd2(vector double x)
98{
99  vec_uint4   x_gt_half, x_eq_half;
100  vec_double2 x_neg;                    // input x is negative
101  vec_double2 x_abs;                    // absolute value of x
102  vec_double2 x_trans;                  // transformed x when |x| > 0.5
103  vec_double2 x2, x3;                   // x squared and x cubed, respectively.
104  vec_double2 result;
105  vec_double2 multiplier, addend; 
106  vec_double2 p, q, pq;
107  vec_double2 half = spu_splats(0.5);
108  vec_double2 sign = (vec_double2)spu_splats(0x8000000000000000ULL);
109  vec_uchar16 splat_hi = ((vec_uchar16){0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11});
110 
111  // Compute the absolute value of x
112  x_abs = spu_andc(x, sign);
113 
114  // Perform transformation for the case where |x| > 0.5. We rely on
115  // sqrtd2 producing a NAN is |x| > 1.0.
116  x_trans = _sqrtd2(spu_nmsub(x_abs, half, half));
117 
118  // Determine the correct addend and multiplier.
119  x_neg = (vec_double2)spu_rlmaska((vec_int4)spu_shuffle(x, x, splat_hi), -31);
120
121  x_gt_half = spu_cmpgt((vec_uint4)x_abs, (vec_uint4)half);
122  x_eq_half = spu_cmpeq((vec_uint4)x_abs, (vec_uint4)half);
123  x_gt_half = spu_or(x_gt_half, spu_and(x_eq_half, spu_rlqwbyte(x_gt_half, 4)));
124  x_gt_half = spu_shuffle(x_gt_half, x_gt_half, splat_hi);
125
126  addend = spu_sel(spu_splats(SM_PI_2), spu_and(spu_splats(SM_PI), x_neg), (vec_ullong2)x_gt_half);
127
128  multiplier = spu_sel(spu_splats(-1.0), spu_sel(spu_splats(2.0), x, (vec_ullong2)sign), (vec_ullong2)x_gt_half);
129
130  // Select whether to use the x or the transformed x for the polygon evaluation.
131  // if |x| > 0.5 use x_trans
132  // else         use x
133
134  x = spu_sel(x, x_trans, (vec_ullong2)x_gt_half);
135
136  // Compute the polynomials.
137
138  x2 = spu_mul(x, x);
139  x3 = spu_mul(x2, x);
140 
141  p = spu_madd(spu_splats(0.004253011369004428248960), x2, spu_splats(-0.6019598008014123785661));
142  p = spu_madd(p, x2, spu_splats(5.444622390564711410273));
143  p = spu_madd(p, x2, spu_splats(-16.26247967210700244449));
144  p = spu_madd(p, x2, spu_splats(19.56261983317594739197));
145  p = spu_madd(p, x2, spu_splats(-8.198089802484824371615));
146
147  q = spu_add(x2, spu_splats(-14.74091372988853791896));
148  q = spu_madd(q, x2, spu_splats(70.49610280856842141659));
149  q = spu_madd(q, x2, spu_splats(-147.1791292232726029859));
150  q = spu_madd(q, x2, spu_splats(139.5105614657485689735));
151  q = spu_madd(q, x2, spu_splats(-49.18853881490881290097));
152 
153  // Compute the rational solution p/q and final multiplication and addend
154  // correction.
155  pq = _divd2(p, q);
156
157  result = spu_madd(spu_madd(x3, pq, x), multiplier, addend);
158
159  return (result);
160}
161
162#endif /* _ACOSD2_H_ */
163#endif /* __SPU__ */
164
Note: See TracBrowser for help on using the repository browser.