1 | /* crypto/rand/md_rand.c */ |
---|
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
---|
3 | * All rights reserved. |
---|
4 | * |
---|
5 | * This package is an SSL implementation written |
---|
6 | * by Eric Young (eay@cryptsoft.com). |
---|
7 | * The implementation was written so as to conform with Netscapes SSL. |
---|
8 | * |
---|
9 | * This library is free for commercial and non-commercial use as long as |
---|
10 | * the following conditions are aheared to. The following conditions |
---|
11 | * apply to all code found in this distribution, be it the RC4, RSA, |
---|
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
---|
13 | * included with this distribution is covered by the same copyright terms |
---|
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
---|
15 | * |
---|
16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
---|
17 | * the code are not to be removed. |
---|
18 | * If this package is used in a product, Eric Young should be given attribution |
---|
19 | * as the author of the parts of the library used. |
---|
20 | * This can be in the form of a textual message at program startup or |
---|
21 | * in documentation (online or textual) provided with the package. |
---|
22 | * |
---|
23 | * Redistribution and use in source and binary forms, with or without |
---|
24 | * modification, are permitted provided that the following conditions |
---|
25 | * are met: |
---|
26 | * 1. Redistributions of source code must retain the copyright |
---|
27 | * notice, this list of conditions and the following disclaimer. |
---|
28 | * 2. Redistributions in binary form must reproduce the above copyright |
---|
29 | * notice, this list of conditions and the following disclaimer in the |
---|
30 | * documentation and/or other materials provided with the distribution. |
---|
31 | * 3. All advertising materials mentioning features or use of this software |
---|
32 | * must display the following acknowledgement: |
---|
33 | * "This product includes cryptographic software written by |
---|
34 | * Eric Young (eay@cryptsoft.com)" |
---|
35 | * The word 'cryptographic' can be left out if the rouines from the library |
---|
36 | * being used are not cryptographic related :-). |
---|
37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
---|
38 | * the apps directory (application code) you must include an acknowledgement: |
---|
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
---|
40 | * |
---|
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
---|
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
---|
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
---|
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
---|
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
---|
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
---|
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
---|
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
---|
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
---|
51 | * SUCH DAMAGE. |
---|
52 | * |
---|
53 | * The licence and distribution terms for any publically available version or |
---|
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
---|
55 | * copied and put under another distribution licence |
---|
56 | * [including the GNU Public Licence.] |
---|
57 | */ |
---|
58 | /* ==================================================================== |
---|
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
---|
60 | * |
---|
61 | * Redistribution and use in source and binary forms, with or without |
---|
62 | * modification, are permitted provided that the following conditions |
---|
63 | * are met: |
---|
64 | * |
---|
65 | * 1. Redistributions of source code must retain the above copyright |
---|
66 | * notice, this list of conditions and the following disclaimer. |
---|
67 | * |
---|
68 | * 2. Redistributions in binary form must reproduce the above copyright |
---|
69 | * notice, this list of conditions and the following disclaimer in |
---|
70 | * the documentation and/or other materials provided with the |
---|
71 | * distribution. |
---|
72 | * |
---|
73 | * 3. All advertising materials mentioning features or use of this |
---|
74 | * software must display the following acknowledgment: |
---|
75 | * "This product includes software developed by the OpenSSL Project |
---|
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
---|
77 | * |
---|
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
---|
79 | * endorse or promote products derived from this software without |
---|
80 | * prior written permission. For written permission, please contact |
---|
81 | * openssl-core@openssl.org. |
---|
82 | * |
---|
83 | * 5. Products derived from this software may not be called "OpenSSL" |
---|
84 | * nor may "OpenSSL" appear in their names without prior written |
---|
85 | * permission of the OpenSSL Project. |
---|
86 | * |
---|
87 | * 6. Redistributions of any form whatsoever must retain the following |
---|
88 | * acknowledgment: |
---|
89 | * "This product includes software developed by the OpenSSL Project |
---|
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
---|
91 | * |
---|
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
---|
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
---|
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
---|
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
---|
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
---|
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
---|
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
---|
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
---|
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
---|
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
104 | * ==================================================================== |
---|
105 | * |
---|
106 | * This product includes cryptographic software written by Eric Young |
---|
107 | * (eay@cryptsoft.com). This product includes software written by Tim |
---|
108 | * Hudson (tjh@cryptsoft.com). |
---|
109 | * |
---|
110 | */ |
---|
111 | |
---|
112 | #ifdef MD_RAND_DEBUG |
---|
113 | # ifndef NDEBUG |
---|
114 | # define NDEBUG |
---|
115 | # endif |
---|
116 | #endif |
---|
117 | |
---|
118 | #include <assert.h> |
---|
119 | #include <stdio.h> |
---|
120 | #include <string.h> |
---|
121 | |
---|
122 | //#include "e_os.h" |
---|
123 | |
---|
124 | #include "rand.h" |
---|
125 | #include "rand_lcl.h" |
---|
126 | |
---|
127 | #include "crypto.h" |
---|
128 | #include "err.h" |
---|
129 | #ifdef OPENSSL_FIPS |
---|
130 | #include <openssl/fips.h> |
---|
131 | #endif |
---|
132 | |
---|
133 | |
---|
134 | #ifdef BN_DEBUG |
---|
135 | # define PREDICT |
---|
136 | #endif |
---|
137 | |
---|
138 | /* #define PREDICT 1 */ |
---|
139 | |
---|
140 | #define STATE_SIZE 1023 |
---|
141 | static int state_num=0,state_index=0; |
---|
142 | static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH]; |
---|
143 | static unsigned char md[MD_DIGEST_LENGTH]; |
---|
144 | static long md_count[2]={0,0}; |
---|
145 | static double entropy=0; |
---|
146 | static int initialized=0; |
---|
147 | |
---|
148 | static unsigned int crypto_lock_rand = 0; /* may be set only when a thread |
---|
149 | * holds CRYPTO_LOCK_RAND |
---|
150 | * (to prevent double locking) */ |
---|
151 | /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */ |
---|
152 | static unsigned long locking_thread = 0; /* valid iff crypto_lock_rand is set */ |
---|
153 | |
---|
154 | |
---|
155 | #ifdef PREDICT |
---|
156 | int rand_predictable=0; |
---|
157 | #endif |
---|
158 | |
---|
159 | const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT; |
---|
160 | |
---|
161 | static void ssleay_rand_cleanup(void); |
---|
162 | static void ssleay_rand_seed(const void *buf, int num); |
---|
163 | static void ssleay_rand_add(const void *buf, int num, double add_entropy); |
---|
164 | static int ssleay_rand_bytes(unsigned char *buf, int num); |
---|
165 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num); |
---|
166 | static int ssleay_rand_status(void); |
---|
167 | |
---|
168 | RAND_METHOD rand_ssleay_meth={ |
---|
169 | ssleay_rand_seed, |
---|
170 | ssleay_rand_bytes, |
---|
171 | ssleay_rand_cleanup, |
---|
172 | ssleay_rand_add, |
---|
173 | ssleay_rand_pseudo_bytes, |
---|
174 | ssleay_rand_status |
---|
175 | }; |
---|
176 | |
---|
177 | RAND_METHOD *RAND_SSLeay(void) |
---|
178 | { |
---|
179 | return(&rand_ssleay_meth); |
---|
180 | } |
---|
181 | |
---|
182 | static void ssleay_rand_cleanup(void) |
---|
183 | { |
---|
184 | OPENSSL_cleanse(state,sizeof(state)); |
---|
185 | state_num=0; |
---|
186 | state_index=0; |
---|
187 | OPENSSL_cleanse(md,MD_DIGEST_LENGTH); |
---|
188 | md_count[0]=0; |
---|
189 | md_count[1]=0; |
---|
190 | entropy=0; |
---|
191 | initialized=0; |
---|
192 | } |
---|
193 | |
---|
194 | static void ssleay_rand_add(const void *buf, int num, double add) |
---|
195 | { |
---|
196 | int i,j,k,st_idx; |
---|
197 | long md_c[2]; |
---|
198 | unsigned char local_md[MD_DIGEST_LENGTH]; |
---|
199 | EVP_MD_CTX m; |
---|
200 | int do_not_lock; |
---|
201 | |
---|
202 | /* |
---|
203 | * (Based on the rand(3) manpage) |
---|
204 | * |
---|
205 | * The input is chopped up into units of 20 bytes (or less for |
---|
206 | * the last block). Each of these blocks is run through the hash |
---|
207 | * function as follows: The data passed to the hash function |
---|
208 | * is the current 'md', the same number of bytes from the 'state' |
---|
209 | * (the location determined by in incremented looping index) as |
---|
210 | * the current 'block', the new key data 'block', and 'count' |
---|
211 | * (which is incremented after each use). |
---|
212 | * The result of this is kept in 'md' and also xored into the |
---|
213 | * 'state' at the same locations that were used as input into the |
---|
214 | * hash function. |
---|
215 | */ |
---|
216 | |
---|
217 | /* check if we already have the lock */ |
---|
218 | if (crypto_lock_rand) |
---|
219 | { |
---|
220 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); |
---|
221 | do_not_lock = (locking_thread == CRYPTO_thread_id()); |
---|
222 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); |
---|
223 | } |
---|
224 | else |
---|
225 | do_not_lock = 0; |
---|
226 | |
---|
227 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
---|
228 | st_idx=state_index; |
---|
229 | |
---|
230 | /* use our own copies of the counters so that even |
---|
231 | * if a concurrent thread seeds with exactly the |
---|
232 | * same data and uses the same subarray there's _some_ |
---|
233 | * difference */ |
---|
234 | md_c[0] = md_count[0]; |
---|
235 | md_c[1] = md_count[1]; |
---|
236 | |
---|
237 | memcpy(local_md, md, sizeof md); |
---|
238 | |
---|
239 | /* state_index <= state_num <= STATE_SIZE */ |
---|
240 | state_index += num; |
---|
241 | if (state_index >= STATE_SIZE) |
---|
242 | { |
---|
243 | state_index%=STATE_SIZE; |
---|
244 | state_num=STATE_SIZE; |
---|
245 | } |
---|
246 | else if (state_num < STATE_SIZE) |
---|
247 | { |
---|
248 | if (state_index > state_num) |
---|
249 | state_num=state_index; |
---|
250 | } |
---|
251 | /* state_index <= state_num <= STATE_SIZE */ |
---|
252 | |
---|
253 | /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] |
---|
254 | * are what we will use now, but other threads may use them |
---|
255 | * as well */ |
---|
256 | |
---|
257 | md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0); |
---|
258 | |
---|
259 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
---|
260 | |
---|
261 | EVP_MD_CTX_init(&m); |
---|
262 | for (i=0; i<num; i+=MD_DIGEST_LENGTH) |
---|
263 | { |
---|
264 | j=(num-i); |
---|
265 | j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j; |
---|
266 | |
---|
267 | MD_Init(&m); |
---|
268 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); |
---|
269 | k=(st_idx+j)-STATE_SIZE; |
---|
270 | if (k > 0) |
---|
271 | { |
---|
272 | MD_Update(&m,&(state[st_idx]),j-k); |
---|
273 | MD_Update(&m,&(state[0]),k); |
---|
274 | } |
---|
275 | else |
---|
276 | MD_Update(&m,&(state[st_idx]),j); |
---|
277 | |
---|
278 | MD_Update(&m,buf,j); |
---|
279 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); |
---|
280 | MD_Final(&m,local_md); |
---|
281 | md_c[1]++; |
---|
282 | |
---|
283 | buf=(const char *)buf + j; |
---|
284 | |
---|
285 | for (k=0; k<j; k++) |
---|
286 | { |
---|
287 | /* Parallel threads may interfere with this, |
---|
288 | * but always each byte of the new state is |
---|
289 | * the XOR of some previous value of its |
---|
290 | * and local_md (itermediate values may be lost). |
---|
291 | * Alway using locking could hurt performance more |
---|
292 | * than necessary given that conflicts occur only |
---|
293 | * when the total seeding is longer than the random |
---|
294 | * state. */ |
---|
295 | state[st_idx++]^=local_md[k]; |
---|
296 | if (st_idx >= STATE_SIZE) |
---|
297 | st_idx=0; |
---|
298 | } |
---|
299 | } |
---|
300 | EVP_MD_CTX_cleanup(&m); |
---|
301 | |
---|
302 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
---|
303 | /* Don't just copy back local_md into md -- this could mean that |
---|
304 | * other thread's seeding remains without effect (except for |
---|
305 | * the incremented counter). By XORing it we keep at least as |
---|
306 | * much entropy as fits into md. */ |
---|
307 | for (k = 0; k < (int)sizeof(md); k++) |
---|
308 | { |
---|
309 | md[k] ^= local_md[k]; |
---|
310 | } |
---|
311 | if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */ |
---|
312 | entropy += add; |
---|
313 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
---|
314 | |
---|
315 | #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) |
---|
316 | assert(md_c[1] == md_count[1]); |
---|
317 | #endif |
---|
318 | } |
---|
319 | |
---|
320 | static void ssleay_rand_seed(const void *buf, int num) |
---|
321 | { |
---|
322 | ssleay_rand_add(buf, num, (double)num); |
---|
323 | } |
---|
324 | |
---|
325 | static int ssleay_rand_bytes(unsigned char *buf, int num) |
---|
326 | { |
---|
327 | static volatile int stirred_pool = 0; |
---|
328 | int i,j,k,st_num,st_idx; |
---|
329 | int num_ceil; |
---|
330 | int ok; |
---|
331 | long md_c[2]; |
---|
332 | unsigned char local_md[MD_DIGEST_LENGTH]; |
---|
333 | EVP_MD_CTX m; |
---|
334 | #ifndef GETPID_IS_MEANINGLESS |
---|
335 | pid_t curr_pid = getpid(); |
---|
336 | #endif |
---|
337 | int do_stir_pool = 0; |
---|
338 | |
---|
339 | #ifdef OPENSSL_FIPS |
---|
340 | if(FIPS_mode()) |
---|
341 | { |
---|
342 | FIPSerr(FIPS_F_SSLEAY_RAND_BYTES,FIPS_R_NON_FIPS_METHOD); |
---|
343 | return 0; |
---|
344 | } |
---|
345 | #endif |
---|
346 | |
---|
347 | #ifdef PREDICT |
---|
348 | if (rand_predictable) |
---|
349 | { |
---|
350 | static unsigned char val=0; |
---|
351 | |
---|
352 | for (i=0; i<num; i++) |
---|
353 | buf[i]=val++; |
---|
354 | return(1); |
---|
355 | } |
---|
356 | #endif |
---|
357 | |
---|
358 | if (num <= 0) |
---|
359 | return 1; |
---|
360 | |
---|
361 | EVP_MD_CTX_init(&m); |
---|
362 | /* round upwards to multiple of MD_DIGEST_LENGTH/2 */ |
---|
363 | num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2); |
---|
364 | |
---|
365 | /* |
---|
366 | * (Based on the rand(3) manpage:) |
---|
367 | * |
---|
368 | * For each group of 10 bytes (or less), we do the following: |
---|
369 | * |
---|
370 | * Input into the hash function the local 'md' (which is initialized from |
---|
371 | * the global 'md' before any bytes are generated), the bytes that are to |
---|
372 | * be overwritten by the random bytes, and bytes from the 'state' |
---|
373 | * (incrementing looping index). From this digest output (which is kept |
---|
374 | * in 'md'), the top (up to) 10 bytes are returned to the caller and the |
---|
375 | * bottom 10 bytes are xored into the 'state'. |
---|
376 | * |
---|
377 | * Finally, after we have finished 'num' random bytes for the |
---|
378 | * caller, 'count' (which is incremented) and the local and global 'md' |
---|
379 | * are fed into the hash function and the results are kept in the |
---|
380 | * global 'md'. |
---|
381 | */ |
---|
382 | |
---|
383 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
---|
384 | |
---|
385 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ |
---|
386 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); |
---|
387 | locking_thread = CRYPTO_thread_id(); |
---|
388 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); |
---|
389 | crypto_lock_rand = 1; |
---|
390 | |
---|
391 | if (!initialized) |
---|
392 | { |
---|
393 | RAND_poll(); |
---|
394 | initialized = 1; |
---|
395 | } |
---|
396 | |
---|
397 | if (!stirred_pool) |
---|
398 | do_stir_pool = 1; |
---|
399 | |
---|
400 | ok = (entropy >= ENTROPY_NEEDED); |
---|
401 | if (!ok) |
---|
402 | { |
---|
403 | /* If the PRNG state is not yet unpredictable, then seeing |
---|
404 | * the PRNG output may help attackers to determine the new |
---|
405 | * state; thus we have to decrease the entropy estimate. |
---|
406 | * Once we've had enough initial seeding we don't bother to |
---|
407 | * adjust the entropy count, though, because we're not ambitious |
---|
408 | * to provide *information-theoretic* randomness. |
---|
409 | * |
---|
410 | * NOTE: This approach fails if the program forks before |
---|
411 | * we have enough entropy. Entropy should be collected |
---|
412 | * in a separate input pool and be transferred to the |
---|
413 | * output pool only when the entropy limit has been reached. |
---|
414 | */ |
---|
415 | entropy -= num; |
---|
416 | if (entropy < 0) |
---|
417 | entropy = 0; |
---|
418 | } |
---|
419 | |
---|
420 | if (do_stir_pool) |
---|
421 | { |
---|
422 | /* In the output function only half of 'md' remains secret, |
---|
423 | * so we better make sure that the required entropy gets |
---|
424 | * 'evenly distributed' through 'state', our randomness pool. |
---|
425 | * The input function (ssleay_rand_add) chains all of 'md', |
---|
426 | * which makes it more suitable for this purpose. |
---|
427 | */ |
---|
428 | |
---|
429 | int n = STATE_SIZE; /* so that the complete pool gets accessed */ |
---|
430 | while (n > 0) |
---|
431 | { |
---|
432 | #if MD_DIGEST_LENGTH > 20 |
---|
433 | # error "Please adjust DUMMY_SEED." |
---|
434 | #endif |
---|
435 | #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */ |
---|
436 | /* Note that the seed does not matter, it's just that |
---|
437 | * ssleay_rand_add expects to have something to hash. */ |
---|
438 | ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0); |
---|
439 | n -= MD_DIGEST_LENGTH; |
---|
440 | } |
---|
441 | if (ok) |
---|
442 | stirred_pool = 1; |
---|
443 | } |
---|
444 | |
---|
445 | st_idx=state_index; |
---|
446 | st_num=state_num; |
---|
447 | md_c[0] = md_count[0]; |
---|
448 | md_c[1] = md_count[1]; |
---|
449 | memcpy(local_md, md, sizeof md); |
---|
450 | |
---|
451 | state_index+=num_ceil; |
---|
452 | if (state_index > state_num) |
---|
453 | state_index %= state_num; |
---|
454 | |
---|
455 | /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] |
---|
456 | * are now ours (but other threads may use them too) */ |
---|
457 | |
---|
458 | md_count[0] += 1; |
---|
459 | |
---|
460 | /* before unlocking, we must clear 'crypto_lock_rand' */ |
---|
461 | crypto_lock_rand = 0; |
---|
462 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
---|
463 | |
---|
464 | while (num > 0) |
---|
465 | { |
---|
466 | /* num_ceil -= MD_DIGEST_LENGTH/2 */ |
---|
467 | j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num; |
---|
468 | num-=j; |
---|
469 | MD_Init(&m); |
---|
470 | #ifndef GETPID_IS_MEANINGLESS |
---|
471 | if (curr_pid) /* just in the first iteration to save time */ |
---|
472 | { |
---|
473 | MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid); |
---|
474 | curr_pid = 0; |
---|
475 | } |
---|
476 | #endif |
---|
477 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); |
---|
478 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); |
---|
479 | #ifndef PURIFY |
---|
480 | MD_Update(&m,buf,j); /* purify complains */ |
---|
481 | #endif |
---|
482 | k=(st_idx+MD_DIGEST_LENGTH/2)-st_num; |
---|
483 | if (k > 0) |
---|
484 | { |
---|
485 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k); |
---|
486 | MD_Update(&m,&(state[0]),k); |
---|
487 | } |
---|
488 | else |
---|
489 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2); |
---|
490 | MD_Final(&m,local_md); |
---|
491 | |
---|
492 | for (i=0; i<MD_DIGEST_LENGTH/2; i++) |
---|
493 | { |
---|
494 | state[st_idx++]^=local_md[i]; /* may compete with other threads */ |
---|
495 | if (st_idx >= st_num) |
---|
496 | st_idx=0; |
---|
497 | if (i < j) |
---|
498 | *(buf++)=local_md[i+MD_DIGEST_LENGTH/2]; |
---|
499 | } |
---|
500 | } |
---|
501 | |
---|
502 | MD_Init(&m); |
---|
503 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); |
---|
504 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); |
---|
505 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
---|
506 | MD_Update(&m,md,MD_DIGEST_LENGTH); |
---|
507 | MD_Final(&m,md); |
---|
508 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
---|
509 | |
---|
510 | EVP_MD_CTX_cleanup(&m); |
---|
511 | if (ok) |
---|
512 | return(1); |
---|
513 | else |
---|
514 | { |
---|
515 | RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED); |
---|
516 | ERR_add_error_data(1, "You need to read the OpenSSL FAQ, " |
---|
517 | "http://www.openssl.org/support/faq.html"); |
---|
518 | return(0); |
---|
519 | } |
---|
520 | } |
---|
521 | |
---|
522 | /* pseudo-random bytes that are guaranteed to be unique but not |
---|
523 | unpredictable */ |
---|
524 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num) |
---|
525 | { |
---|
526 | int ret; |
---|
527 | unsigned long err; |
---|
528 | |
---|
529 | ret = RAND_bytes(buf, num); |
---|
530 | if (ret == 0) |
---|
531 | { |
---|
532 | err = ERR_peek_error(); |
---|
533 | if (ERR_GET_LIB(err) == ERR_LIB_RAND && |
---|
534 | ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED) |
---|
535 | ERR_clear_error(); |
---|
536 | } |
---|
537 | return (ret); |
---|
538 | } |
---|
539 | |
---|
540 | static int ssleay_rand_status(void) |
---|
541 | { |
---|
542 | int ret; |
---|
543 | int do_not_lock; |
---|
544 | |
---|
545 | /* check if we already have the lock |
---|
546 | * (could happen if a RAND_poll() implementation calls RAND_status()) */ |
---|
547 | if (crypto_lock_rand) |
---|
548 | { |
---|
549 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); |
---|
550 | do_not_lock = (locking_thread == CRYPTO_thread_id()); |
---|
551 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); |
---|
552 | } |
---|
553 | else |
---|
554 | do_not_lock = 0; |
---|
555 | |
---|
556 | if (!do_not_lock) |
---|
557 | { |
---|
558 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
---|
559 | |
---|
560 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ |
---|
561 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); |
---|
562 | locking_thread = CRYPTO_thread_id(); |
---|
563 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); |
---|
564 | crypto_lock_rand = 1; |
---|
565 | } |
---|
566 | |
---|
567 | if (!initialized) |
---|
568 | { |
---|
569 | RAND_poll(); |
---|
570 | initialized = 1; |
---|
571 | } |
---|
572 | |
---|
573 | ret = entropy >= ENTROPY_NEEDED; |
---|
574 | |
---|
575 | if (!do_not_lock) |
---|
576 | { |
---|
577 | /* before unlocking, we must clear 'crypto_lock_rand' */ |
---|
578 | crypto_lock_rand = 0; |
---|
579 | |
---|
580 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
---|
581 | } |
---|
582 | |
---|
583 | return ret; |
---|
584 | } |
---|