1 | |
---|
2 | /* @(#)e_acos.c 5.1 93/09/24 */ |
---|
3 | /* |
---|
4 | * ==================================================== |
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
6 | * |
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
8 | * Permission to use, copy, modify, and distribute this |
---|
9 | * software is freely granted, provided that this notice |
---|
10 | * is preserved. |
---|
11 | * ==================================================== |
---|
12 | */ |
---|
13 | |
---|
14 | /* __ieee754_acos(x) |
---|
15 | * Method : |
---|
16 | * acos(x) = pi/2 - asin(x) |
---|
17 | * acos(-x) = pi/2 + asin(x) |
---|
18 | * For |x|<=0.5 |
---|
19 | * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) |
---|
20 | * For x>0.5 |
---|
21 | * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) |
---|
22 | * = 2asin(sqrt((1-x)/2)) |
---|
23 | * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) |
---|
24 | * = 2f + (2c + 2s*z*R(z)) |
---|
25 | * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term |
---|
26 | * for f so that f+c ~ sqrt(z). |
---|
27 | * For x<-0.5 |
---|
28 | * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) |
---|
29 | * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) |
---|
30 | * |
---|
31 | * Special cases: |
---|
32 | * if x is NaN, return x itself; |
---|
33 | * if |x|>1, return NaN with invalid signal. |
---|
34 | * |
---|
35 | * Function needed: sqrt |
---|
36 | */ |
---|
37 | |
---|
38 | #include <libm/fdlibm.h> |
---|
39 | |
---|
40 | #ifdef __STDC__ |
---|
41 | static const double |
---|
42 | #else |
---|
43 | static double |
---|
44 | #endif |
---|
45 | one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
---|
46 | pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
---|
47 | pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
---|
48 | pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
---|
49 | pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
---|
50 | pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
---|
51 | pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
---|
52 | pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
---|
53 | pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
---|
54 | pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
---|
55 | qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
---|
56 | qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
---|
57 | qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
---|
58 | qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
---|
59 | |
---|
60 | #ifdef __STDC__ |
---|
61 | double __ieee754_acos(double x) |
---|
62 | #else |
---|
63 | double __ieee754_acos(x) |
---|
64 | double x; |
---|
65 | #endif |
---|
66 | { |
---|
67 | double z,p,q,r,w,s,c,df; |
---|
68 | int n0,hx,ix; |
---|
69 | n0 = ((*(int*)&one)>>29)^1; |
---|
70 | hx = *(n0+(int*)&x); |
---|
71 | ix = hx&0x7fffffff; |
---|
72 | if(ix>=0x3ff00000) { /* |x| >= 1 */ |
---|
73 | if(((ix-0x3ff00000)|*(1-n0+(int*)&x))==0) { /* |x|==1 */ |
---|
74 | if(hx>0) return 0.0; /* acos(1) = 0 */ |
---|
75 | else return pi+2.0*pio2_lo; /* acos(-1)= pi */ |
---|
76 | } |
---|
77 | return (x-x)/(x-x); /* acos(|x|>1) is NaN */ |
---|
78 | } |
---|
79 | if(ix<0x3fe00000) { /* |x| < 0.5 */ |
---|
80 | if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ |
---|
81 | z = x*x; |
---|
82 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
---|
83 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
---|
84 | r = p/q; |
---|
85 | return pio2_hi - (x - (pio2_lo-x*r)); |
---|
86 | } else if (hx<0) { /* x < -0.5 */ |
---|
87 | z = (one+x)*0.5; |
---|
88 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
---|
89 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
---|
90 | s = sqrt(z); |
---|
91 | r = p/q; |
---|
92 | w = r*s-pio2_lo; |
---|
93 | return pi - 2.0*(s+w); |
---|
94 | } else { /* x > 0.5 */ |
---|
95 | z = (one-x)*0.5; |
---|
96 | s = sqrt(z); |
---|
97 | df = s; |
---|
98 | *(1-n0+(int*)&df) = 0; |
---|
99 | c = (z-df*df)/(s+df); |
---|
100 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
---|
101 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
---|
102 | r = p/q; |
---|
103 | w = r*s+c; |
---|
104 | return 2.0*(df+w); |
---|
105 | } |
---|
106 | } |
---|