1 | |
---|
2 | /* @(#)e_acosh.c 5.1 93/09/24 */ |
---|
3 | /* |
---|
4 | * ==================================================== |
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
6 | * |
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
8 | * Permission to use, copy, modify, and distribute this |
---|
9 | * software is freely granted, provided that this notice |
---|
10 | * is preserved. |
---|
11 | * ==================================================== |
---|
12 | * |
---|
13 | */ |
---|
14 | |
---|
15 | /* __ieee754_acosh(x) |
---|
16 | * Method : |
---|
17 | * Based on |
---|
18 | * acosh(x) = log [ x + sqrt(x*x-1) ] |
---|
19 | * we have |
---|
20 | * acosh(x) := log(x)+ln2, if x is large; else |
---|
21 | * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else |
---|
22 | * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. |
---|
23 | * |
---|
24 | * Special cases: |
---|
25 | * acosh(x) is NaN with signal if x<1. |
---|
26 | * acosh(NaN) is NaN without signal. |
---|
27 | */ |
---|
28 | |
---|
29 | #include <libm/fdlibm.h> |
---|
30 | |
---|
31 | #ifdef __STDC__ |
---|
32 | static const double |
---|
33 | #else |
---|
34 | static double |
---|
35 | #endif |
---|
36 | one = 1.0, |
---|
37 | ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ |
---|
38 | |
---|
39 | #ifdef __STDC__ |
---|
40 | double __ieee754_acosh(double x) |
---|
41 | #else |
---|
42 | double __ieee754_acosh(x) |
---|
43 | double x; |
---|
44 | #endif |
---|
45 | { |
---|
46 | double t; |
---|
47 | int n0,hx; |
---|
48 | n0 = ((*(int*)&one)>>29)^1; |
---|
49 | hx = *(n0+(int*)&x); |
---|
50 | if(hx<0x3ff00000) { /* x < 1 */ |
---|
51 | return (x-x)/(x-x); |
---|
52 | } else if(hx >=0x41b00000) { /* x > 2**28 */ |
---|
53 | if(hx >=0x7ff00000) { /* x is inf of NaN */ |
---|
54 | return x+x; |
---|
55 | } else |
---|
56 | return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */ |
---|
57 | } else if(((hx-0x3ff00000)|*(1-n0+(int*)&x))==0) { |
---|
58 | return 0.0; /* acosh(1) = 0 */ |
---|
59 | } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ |
---|
60 | t=x*x; |
---|
61 | return __ieee754_log(2.0*x-one/(x+sqrt(t-one))); |
---|
62 | } else { /* 1<x<2 */ |
---|
63 | t = x-one; |
---|
64 | return log1p(t+sqrt(2.0*t+t*t)); |
---|
65 | } |
---|
66 | } |
---|