[1] | 1 | |
---|
| 2 | /* @(#)e_exp.c 5.1 93/09/24 */ |
---|
| 3 | /* |
---|
| 4 | * ==================================================== |
---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
| 6 | * |
---|
| 7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
| 8 | * Permission to use, copy, modify, and distribute this |
---|
| 9 | * software is freely granted, provided that this notice |
---|
| 10 | * is preserved. |
---|
| 11 | * ==================================================== |
---|
| 12 | */ |
---|
| 13 | |
---|
| 14 | /* __ieee754_exp(x) |
---|
| 15 | * Returns the exponential of x. |
---|
| 16 | * |
---|
| 17 | * Method |
---|
| 18 | * 1. Argument reduction: |
---|
| 19 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
---|
| 20 | * Given x, find r and integer k such that |
---|
| 21 | * |
---|
| 22 | * x = k*ln2 + r, |r| <= 0.5*ln2. |
---|
| 23 | * |
---|
| 24 | * Here r will be represented as r = hi-lo for better |
---|
| 25 | * accuracy. |
---|
| 26 | * |
---|
| 27 | * 2. Approximation of exp(r) by a special rational function on |
---|
| 28 | * the interval [0,0.34658]: |
---|
| 29 | * Write |
---|
| 30 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
---|
| 31 | * We use a special Reme algorithm on [0,0.34658] to generate |
---|
| 32 | * a polynomial of degree 5 to approximate R. The maximum error |
---|
| 33 | * of this polynomial approximation is bounded by 2**-59. In |
---|
| 34 | * other words, |
---|
| 35 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
---|
| 36 | * (where z=r*r, and the values of P1 to P5 are listed below) |
---|
| 37 | * and |
---|
| 38 | * | 5 | -59 |
---|
| 39 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
---|
| 40 | * | | |
---|
| 41 | * The computation of exp(r) thus becomes |
---|
| 42 | * 2*r |
---|
| 43 | * exp(r) = 1 + ------- |
---|
| 44 | * R - r |
---|
| 45 | * r*R1(r) |
---|
| 46 | * = 1 + r + ----------- (for better accuracy) |
---|
| 47 | * 2 - R1(r) |
---|
| 48 | * where |
---|
| 49 | * 2 4 10 |
---|
| 50 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
---|
| 51 | * |
---|
| 52 | * 3. Scale back to obtain exp(x): |
---|
| 53 | * From step 1, we have |
---|
| 54 | * exp(x) = 2^k * exp(r) |
---|
| 55 | * |
---|
| 56 | * Special cases: |
---|
| 57 | * exp(INF) is INF, exp(NaN) is NaN; |
---|
| 58 | * exp(-INF) is 0, and |
---|
| 59 | * for finite argument, only exp(0)=1 is exact. |
---|
| 60 | * |
---|
| 61 | * Accuracy: |
---|
| 62 | * according to an error analysis, the error is always less than |
---|
| 63 | * 1 ulp (unit in the last place). |
---|
| 64 | * |
---|
| 65 | * Misc. info. |
---|
| 66 | * For IEEE double |
---|
| 67 | * if x > 7.09782712893383973096e+02 then exp(x) overflow |
---|
| 68 | * if x < -7.45133219101941108420e+02 then exp(x) underflow |
---|
| 69 | * |
---|
| 70 | * Constants: |
---|
| 71 | * The hexadecimal values are the intended ones for the following |
---|
| 72 | * constants. The decimal values may be used, provided that the |
---|
| 73 | * compiler will convert from decimal to binary accurately enough |
---|
| 74 | * to produce the hexadecimal values shown. |
---|
| 75 | */ |
---|
| 76 | |
---|
| 77 | #include <libm/fdlibm.h> |
---|
| 78 | |
---|
| 79 | #ifdef __STDC__ |
---|
| 80 | static const double |
---|
| 81 | #else |
---|
| 82 | static double |
---|
| 83 | #endif |
---|
| 84 | one = 1.0, |
---|
| 85 | halF[2] = {0.5,-0.5,}, |
---|
| 86 | huge = 1.0e+300, |
---|
| 87 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
---|
| 88 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
---|
| 89 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ |
---|
| 90 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
---|
| 91 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ |
---|
| 92 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
---|
| 93 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ |
---|
| 94 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
---|
| 95 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
---|
| 96 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
---|
| 97 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
---|
| 98 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
---|
| 99 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | #ifdef __STDC__ |
---|
| 103 | double __ieee754_exp(double x) /* default IEEE double exp */ |
---|
| 104 | #else |
---|
| 105 | double __ieee754_exp(x) /* default IEEE double exp */ |
---|
| 106 | double x; |
---|
| 107 | #endif |
---|
| 108 | { |
---|
| 109 | double y,hi=0.0,lo=0.0,c,t; |
---|
| 110 | int k=0.0,xsb,n0; |
---|
| 111 | unsigned hx; |
---|
| 112 | |
---|
| 113 | n0 = ((*(int*)&one)>>29)^1; /* high word index */ |
---|
| 114 | hx = *(n0+(unsigned*)&x); /* high word of x */ |
---|
| 115 | xsb = (hx>>31)&1; /* sign bit of x */ |
---|
| 116 | hx &= 0x7fffffff; /* high word of |x| */ |
---|
| 117 | |
---|
| 118 | /* filter out non-finite argument */ |
---|
| 119 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
---|
| 120 | if(hx>=0x7ff00000) { |
---|
| 121 | if(((hx&0xfffff)|*(1-n0+(int*)&x))!=0) |
---|
| 122 | return x+x; /* NaN */ |
---|
| 123 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
---|
| 124 | } |
---|
| 125 | if(x > o_threshold) return huge*huge; /* overflow */ |
---|
| 126 | if(x < u_threshold) return twom1000*twom1000; /* underflow */ |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /* argument reduction */ |
---|
| 130 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
---|
| 131 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
---|
| 132 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
---|
| 133 | } else { |
---|
| 134 | k = invln2*x+halF[xsb]; |
---|
| 135 | t = k; |
---|
| 136 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
---|
| 137 | lo = t*ln2LO[0]; |
---|
| 138 | } |
---|
| 139 | x = hi - lo; |
---|
| 140 | } |
---|
| 141 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */ |
---|
| 142 | if(huge+x>one) return one+x;/* trigger inexact */ |
---|
| 143 | } |
---|
| 144 | else k = 0; |
---|
| 145 | |
---|
| 146 | /* x is now in primary range */ |
---|
| 147 | t = x*x; |
---|
| 148 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
---|
| 149 | if(k==0) return one-((x*c)/(c-2.0)-x); |
---|
| 150 | else y = one-((lo-(x*c)/(2.0-c))-hi); |
---|
| 151 | if(k >= -1021) { |
---|
| 152 | *(n0+(int*)&y) += (k<<20); /* add k to y's exponent */ |
---|
| 153 | return y; |
---|
| 154 | } else { |
---|
| 155 | *(n0+(int*)&y) += ((k+1000)<<20);/* add k to y's exponent */ |
---|
| 156 | return y*twom1000; |
---|
| 157 | } |
---|
| 158 | } |
---|