| 1 |  | 
|---|
| 2 | /* @(#)e_exp.c 5.1 93/09/24 */ | 
|---|
| 3 | /* | 
|---|
| 4 |  * ==================================================== | 
|---|
| 5 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|---|
| 6 |  * | 
|---|
| 7 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|---|
| 8 |  * Permission to use, copy, modify, and distribute this | 
|---|
| 9 |  * software is freely granted, provided that this notice  | 
|---|
| 10 |  * is preserved. | 
|---|
| 11 |  * ==================================================== | 
|---|
| 12 |  */ | 
|---|
| 13 |  | 
|---|
| 14 | /* __ieee754_exp(x) | 
|---|
| 15 |  * Returns the exponential of x. | 
|---|
| 16 |  * | 
|---|
| 17 |  * Method | 
|---|
| 18 |  *   1. Argument reduction: | 
|---|
| 19 |  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. | 
|---|
| 20 |  *      Given x, find r and integer k such that | 
|---|
| 21 |  * | 
|---|
| 22 |  *               x = k*ln2 + r,  |r| <= 0.5*ln2.   | 
|---|
| 23 |  * | 
|---|
| 24 |  *      Here r will be represented as r = hi-lo for better  | 
|---|
| 25 |  *      accuracy. | 
|---|
| 26 |  * | 
|---|
| 27 |  *   2. Approximation of exp(r) by a special rational function on | 
|---|
| 28 |  *      the interval [0,0.34658]: | 
|---|
| 29 |  *      Write | 
|---|
| 30 |  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... | 
|---|
| 31 |  *      We use a special Reme algorithm on [0,0.34658] to generate  | 
|---|
| 32 |  *      a polynomial of degree 5 to approximate R. The maximum error  | 
|---|
| 33 |  *      of this polynomial approximation is bounded by 2**-59. In | 
|---|
| 34 |  *      other words, | 
|---|
| 35 |  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 | 
|---|
| 36 |  *      (where z=r*r, and the values of P1 to P5 are listed below) | 
|---|
| 37 |  *      and | 
|---|
| 38 |  *          |                  5          |     -59 | 
|---|
| 39 |  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2  | 
|---|
| 40 |  *          |                             | | 
|---|
| 41 |  *      The computation of exp(r) thus becomes | 
|---|
| 42 |  *                             2*r | 
|---|
| 43 |  *              exp(r) = 1 + ------- | 
|---|
| 44 |  *                            R - r | 
|---|
| 45 |  *                                 r*R1(r)       | 
|---|
| 46 |  *                     = 1 + r + ----------- (for better accuracy) | 
|---|
| 47 |  *                                2 - R1(r) | 
|---|
| 48 |  *      where | 
|---|
| 49 |  *                               2       4             10 | 
|---|
| 50 |  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). | 
|---|
| 51 |  *       | 
|---|
| 52 |  *   3. Scale back to obtain exp(x): | 
|---|
| 53 |  *      From step 1, we have | 
|---|
| 54 |  *         exp(x) = 2^k * exp(r) | 
|---|
| 55 |  * | 
|---|
| 56 |  * Special cases: | 
|---|
| 57 |  *      exp(INF) is INF, exp(NaN) is NaN; | 
|---|
| 58 |  *      exp(-INF) is 0, and | 
|---|
| 59 |  *      for finite argument, only exp(0)=1 is exact. | 
|---|
| 60 |  * | 
|---|
| 61 |  * Accuracy: | 
|---|
| 62 |  *      according to an error analysis, the error is always less than | 
|---|
| 63 |  *      1 ulp (unit in the last place). | 
|---|
| 64 |  * | 
|---|
| 65 |  * Misc. info. | 
|---|
| 66 |  *      For IEEE double  | 
|---|
| 67 |  *          if x >  7.09782712893383973096e+02 then exp(x) overflow | 
|---|
| 68 |  *          if x < -7.45133219101941108420e+02 then exp(x) underflow | 
|---|
| 69 |  * | 
|---|
| 70 |  * Constants: | 
|---|
| 71 |  * The hexadecimal values are the intended ones for the following  | 
|---|
| 72 |  * constants. The decimal values may be used, provided that the  | 
|---|
| 73 |  * compiler will convert from decimal to binary accurately enough | 
|---|
| 74 |  * to produce the hexadecimal values shown. | 
|---|
| 75 |  */ | 
|---|
| 76 |  | 
|---|
| 77 | #include <libm/fdlibm.h> | 
|---|
| 78 |  | 
|---|
| 79 | #ifdef __STDC__ | 
|---|
| 80 | static const double | 
|---|
| 81 | #else | 
|---|
| 82 | static double | 
|---|
| 83 | #endif | 
|---|
| 84 | one     = 1.0, | 
|---|
| 85 | halF[2] = {0.5,-0.5,}, | 
|---|
| 86 | huge    = 1.0e+300, | 
|---|
| 87 | twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/ | 
|---|
| 88 | o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */ | 
|---|
| 89 | u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */ | 
|---|
| 90 | ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */ | 
|---|
| 91 |              -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ | 
|---|
| 92 | ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */ | 
|---|
| 93 |              -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ | 
|---|
| 94 | invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ | 
|---|
| 95 | P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | 
|---|
| 96 | P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | 
|---|
| 97 | P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | 
|---|
| 98 | P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | 
|---|
| 99 | P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ | 
|---|
| 100 |  | 
|---|
| 101 |  | 
|---|
| 102 | #ifdef __STDC__ | 
|---|
| 103 |         double __ieee754_exp(double x)  /* default IEEE double exp */ | 
|---|
| 104 | #else | 
|---|
| 105 |         double __ieee754_exp(x) /* default IEEE double exp */ | 
|---|
| 106 |         double x; | 
|---|
| 107 | #endif | 
|---|
| 108 | { | 
|---|
| 109 |         double y,hi=0.0,lo=0.0,c,t; | 
|---|
| 110 |         int k=0.0,xsb,n0; | 
|---|
| 111 |         unsigned hx; | 
|---|
| 112 |  | 
|---|
| 113 |         n0 = ((*(int*)&one)>>29)^1;     /* high word index */ | 
|---|
| 114 |         hx  = *(n0+(unsigned*)&x);      /* high word of x */ | 
|---|
| 115 |         xsb = (hx>>31)&1;               /* sign bit of x */ | 
|---|
| 116 |         hx &= 0x7fffffff;               /* high word of |x| */ | 
|---|
| 117 |  | 
|---|
| 118 |     /* filter out non-finite argument */ | 
|---|
| 119 |         if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */ | 
|---|
| 120 |             if(hx>=0x7ff00000) { | 
|---|
| 121 |                 if(((hx&0xfffff)|*(1-n0+(int*)&x))!=0)  | 
|---|
| 122 |                      return x+x;                /* NaN */ | 
|---|
| 123 |                 else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */ | 
|---|
| 124 |             } | 
|---|
| 125 |             if(x > o_threshold) return huge*huge; /* overflow */ | 
|---|
| 126 |             if(x < u_threshold) return twom1000*twom1000; /* underflow */ | 
|---|
| 127 |         } | 
|---|
| 128 |  | 
|---|
| 129 |     /* argument reduction */ | 
|---|
| 130 |         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */  | 
|---|
| 131 |             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */ | 
|---|
| 132 |                 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; | 
|---|
| 133 |             } else { | 
|---|
| 134 |                 k  = invln2*x+halF[xsb]; | 
|---|
| 135 |                 t  = k; | 
|---|
| 136 |                 hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */ | 
|---|
| 137 |                 lo = t*ln2LO[0]; | 
|---|
| 138 |             } | 
|---|
| 139 |             x  = hi - lo; | 
|---|
| 140 |         }  | 
|---|
| 141 |         else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */ | 
|---|
| 142 |             if(huge+x>one) return one+x;/* trigger inexact */ | 
|---|
| 143 |         } | 
|---|
| 144 |         else k = 0; | 
|---|
| 145 |  | 
|---|
| 146 |     /* x is now in primary range */ | 
|---|
| 147 |         t  = x*x; | 
|---|
| 148 |         c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | 
|---|
| 149 |         if(k==0)        return one-((x*c)/(c-2.0)-x);  | 
|---|
| 150 |         else            y = one-((lo-(x*c)/(2.0-c))-hi); | 
|---|
| 151 |         if(k >= -1021) { | 
|---|
| 152 |             *(n0+(int*)&y) += (k<<20);  /* add k to y's exponent */ | 
|---|
| 153 |             return y; | 
|---|
| 154 |         } else { | 
|---|
| 155 |             *(n0+(int*)&y) += ((k+1000)<<20);/* add k to y's exponent */ | 
|---|
| 156 |             return y*twom1000; | 
|---|
| 157 |         } | 
|---|
| 158 | } | 
|---|