[1] | 1 | |
---|
| 2 | /* @(#)e_fmod.c 5.1 93/09/24 */ |
---|
| 3 | /* |
---|
| 4 | * ==================================================== |
---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
| 6 | * |
---|
| 7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
| 8 | * Permission to use, copy, modify, and distribute this |
---|
| 9 | * software is freely granted, provided that this notice |
---|
| 10 | * is preserved. |
---|
| 11 | * ==================================================== |
---|
| 12 | */ |
---|
| 13 | |
---|
| 14 | /* |
---|
| 15 | * __ieee754_fmod(x,y) |
---|
| 16 | * Return x mod y in exact arithmetic |
---|
| 17 | * Method: shift and subtract |
---|
| 18 | */ |
---|
| 19 | |
---|
| 20 | #include <libm/fdlibm.h> |
---|
| 21 | |
---|
| 22 | #ifdef __STDC__ |
---|
| 23 | static const double one = 1.0, Zero[] = {0.0, -0.0,}; |
---|
| 24 | #else |
---|
| 25 | static double one = 1.0, Zero[] = {0.0, -0.0,}; |
---|
| 26 | #endif |
---|
| 27 | |
---|
| 28 | #ifdef __STDC__ |
---|
| 29 | double __ieee754_fmod(double x, double y) |
---|
| 30 | #else |
---|
| 31 | double __ieee754_fmod(x,y) |
---|
| 32 | double x,y ; |
---|
| 33 | #endif |
---|
| 34 | { |
---|
| 35 | int n,n0,n1,hx,hy,hz,ix,iy,sx,i; |
---|
| 36 | int *px = (int*)&x, *py = (int*)&y; |
---|
| 37 | unsigned lx,ly,lz; |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | n0 = ((*(int*)&one)>>29)^1; /* index of high word */ |
---|
| 41 | n1 = 1-n0; /* index of low word */ |
---|
| 42 | |
---|
| 43 | hx = *( n0 + px); /* high word of x */ |
---|
| 44 | lx = *( n1 + px); /* low word of x */ |
---|
| 45 | hy = *( n0 + py); /* high word of y */ |
---|
| 46 | ly = *( n1 + py); /* low word of y */ |
---|
| 47 | sx = hx&0x80000000; /* sign of x */ |
---|
| 48 | hx ^=sx; /* |x| */ |
---|
| 49 | hy &= 0x7fffffff; /* |y| */ |
---|
| 50 | |
---|
| 51 | /* purge off exception values */ |
---|
| 52 | if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ |
---|
| 53 | ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ |
---|
| 54 | return (x*y)/(x*y); |
---|
| 55 | if(hx<=hy) { |
---|
| 56 | if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ |
---|
| 57 | if(lx==ly) |
---|
| 58 | return Zero[(unsigned)sx>>31]; /* |x|=|y| return x*0*/ |
---|
| 59 | } |
---|
| 60 | |
---|
| 61 | /* determine ix = ilogb(x) */ |
---|
| 62 | if(hx<0x00100000) { /* subnormal x */ |
---|
| 63 | if(hx==0) { |
---|
| 64 | for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; |
---|
| 65 | } else { |
---|
| 66 | for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; |
---|
| 67 | } |
---|
| 68 | } else ix = (hx>>20)-1023; |
---|
| 69 | |
---|
| 70 | /* determine iy = ilogb(y) */ |
---|
| 71 | if(hy<0x00100000) { /* subnormal y */ |
---|
| 72 | if(hy==0) { |
---|
| 73 | for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; |
---|
| 74 | } else { |
---|
| 75 | for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; |
---|
| 76 | } |
---|
| 77 | } else iy = (hy>>20)-1023; |
---|
| 78 | |
---|
| 79 | /* set up {hx,lx}, {hy,ly} and align y to x */ |
---|
| 80 | if(ix >= -1022) |
---|
| 81 | hx = 0x00100000|(0x000fffff&hx); |
---|
| 82 | else { /* subnormal x, shift x to normal */ |
---|
| 83 | n = -1022-ix; |
---|
| 84 | if(n<=31) { |
---|
| 85 | hx = (hx<<n)|(lx>>(32-n)); |
---|
| 86 | lx <<= n; |
---|
| 87 | } else { |
---|
| 88 | hx = lx<<(n-32); |
---|
| 89 | lx = 0; |
---|
| 90 | } |
---|
| 91 | } |
---|
| 92 | if(iy >= -1022) |
---|
| 93 | hy = 0x00100000|(0x000fffff&hy); |
---|
| 94 | else { /* subnormal y, shift y to normal */ |
---|
| 95 | n = -1022-iy; |
---|
| 96 | if(n<=31) { |
---|
| 97 | hy = (hy<<n)|(ly>>(32-n)); |
---|
| 98 | ly <<= n; |
---|
| 99 | } else { |
---|
| 100 | hy = ly<<(n-32); |
---|
| 101 | ly = 0; |
---|
| 102 | } |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /* fix point fmod */ |
---|
| 106 | n = ix - iy; |
---|
| 107 | while(n--) { |
---|
| 108 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
---|
| 109 | if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} |
---|
| 110 | else { |
---|
| 111 | if((hz|lz)==0) /* return sign(x)*0 */ |
---|
| 112 | return Zero[(unsigned)sx>>31]; |
---|
| 113 | hx = hz+hz+(lz>>31); lx = lz+lz; |
---|
| 114 | } |
---|
| 115 | } |
---|
| 116 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
---|
| 117 | if(hz>=0) {hx=hz;lx=lz;} |
---|
| 118 | |
---|
| 119 | /* convert back to floating value and restore the sign */ |
---|
| 120 | if((hx|lx)==0) /* return sign(x)*0 */ |
---|
| 121 | return Zero[(unsigned)sx>>31]; |
---|
| 122 | while(hx<0x00100000) { /* normalize x */ |
---|
| 123 | hx = hx+hx+(lx>>31); lx = lx+lx; |
---|
| 124 | iy -= 1; |
---|
| 125 | } |
---|
| 126 | if(iy>= -1022) { /* normalize output */ |
---|
| 127 | hx = ((hx-0x00100000)|((iy+1023)<<20)); |
---|
| 128 | *(n0+px) = hx|sx; |
---|
| 129 | *(n1+px) = lx; |
---|
| 130 | } else { /* subnormal output */ |
---|
| 131 | n = -1022 - iy; |
---|
| 132 | if(n<=20) { |
---|
| 133 | lx = (lx>>n)|((unsigned)hx<<(32-n)); |
---|
| 134 | hx >>= n; |
---|
| 135 | } else if (n<=31) { |
---|
| 136 | lx = (hx<<(32-n))|(lx>>n); hx = sx; |
---|
| 137 | } else { |
---|
| 138 | lx = hx>>(n-32); hx = sx; |
---|
| 139 | } |
---|
| 140 | *(n0+px) = hx|sx; |
---|
| 141 | *(n1+px) = lx; |
---|
| 142 | x *= one; /* create necessary signal */ |
---|
| 143 | } |
---|
| 144 | return x; /* exact output */ |
---|
| 145 | } |
---|