[1] | 1 | |
---|
| 2 | /* @(#)e_j0.c 5.1 93/09/24 */ |
---|
| 3 | /* |
---|
| 4 | * ==================================================== |
---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
| 6 | * |
---|
| 7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
| 8 | * Permission to use, copy, modify, and distribute this |
---|
| 9 | * software is freely granted, provided that this notice |
---|
| 10 | * is preserved. |
---|
| 11 | * ==================================================== |
---|
| 12 | */ |
---|
| 13 | |
---|
| 14 | /* __ieee754_j0(x), __ieee754_y0(x) |
---|
| 15 | * Bessel function of the first and second kinds of order zero. |
---|
| 16 | * Method -- j0(x): |
---|
| 17 | * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... |
---|
| 18 | * 2. Reduce x to |x| since j0(x)=j0(-x), and |
---|
| 19 | * for x in (0,2) |
---|
| 20 | * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; |
---|
| 21 | * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) |
---|
| 22 | * for x in (2,inf) |
---|
| 23 | * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) |
---|
| 24 | * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) |
---|
| 25 | * as follow: |
---|
| 26 | * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
---|
| 27 | * = 1/sqrt(2) * (cos(x) + sin(x)) |
---|
| 28 | * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) |
---|
| 29 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
---|
| 30 | * (To avoid cancellation, use |
---|
| 31 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
---|
| 32 | * to compute the worse one.) |
---|
| 33 | * |
---|
| 34 | * 3 Special cases |
---|
| 35 | * j0(nan)= nan |
---|
| 36 | * j0(0) = 1 |
---|
| 37 | * j0(inf) = 0 |
---|
| 38 | * |
---|
| 39 | * Method -- y0(x): |
---|
| 40 | * 1. For x<2. |
---|
| 41 | * Since |
---|
| 42 | * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) |
---|
| 43 | * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. |
---|
| 44 | * We use the following function to approximate y0, |
---|
| 45 | * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 |
---|
| 46 | * where |
---|
| 47 | * U(z) = u00 + u01*z + ... + u06*z^6 |
---|
| 48 | * V(z) = 1 + v01*z + ... + v04*z^4 |
---|
| 49 | * with absolute approximation error bounded by 2**-72. |
---|
| 50 | * Note: For tiny x, U/V = u0 and j0(x)~1, hence |
---|
| 51 | * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) |
---|
| 52 | * 2. For x>=2. |
---|
| 53 | * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) |
---|
| 54 | * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) |
---|
| 55 | * by the method mentioned above. |
---|
| 56 | * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. |
---|
| 57 | */ |
---|
| 58 | |
---|
| 59 | #include <libm/fdlibm.h> |
---|
| 60 | |
---|
| 61 | #ifdef __STDC__ |
---|
| 62 | static double pzero(double), qzero(double); |
---|
| 63 | #else |
---|
| 64 | static double pzero(), qzero(); |
---|
| 65 | #endif |
---|
| 66 | |
---|
| 67 | #ifdef __STDC__ |
---|
| 68 | static const double |
---|
| 69 | #else |
---|
| 70 | static double |
---|
| 71 | #endif |
---|
| 72 | huge = 1e300, |
---|
| 73 | one = 1.0, |
---|
| 74 | invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
---|
| 75 | tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
---|
| 76 | /* R0/S0 on [0, 2.00] */ |
---|
| 77 | R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ |
---|
| 78 | R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ |
---|
| 79 | R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ |
---|
| 80 | R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ |
---|
| 81 | S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ |
---|
| 82 | S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ |
---|
| 83 | S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ |
---|
| 84 | S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ |
---|
| 85 | |
---|
| 86 | static double zero = 0.0; |
---|
| 87 | |
---|
| 88 | #ifdef __STDC__ |
---|
| 89 | double __ieee754_j0(double x) |
---|
| 90 | #else |
---|
| 91 | double __ieee754_j0(x) |
---|
| 92 | double x; |
---|
| 93 | #endif |
---|
| 94 | { |
---|
| 95 | double z, s,c,ss,cc,r,u,v; |
---|
| 96 | int n0,hx,ix; |
---|
| 97 | |
---|
| 98 | n0 = ((*(int*)&one)>>29)^1; |
---|
| 99 | hx = *(n0+(int*)&x); |
---|
| 100 | ix = hx&0x7fffffff; |
---|
| 101 | if(ix>=0x7ff00000) return one/(x*x); |
---|
| 102 | x = fabs(x); |
---|
| 103 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
---|
| 104 | s = sin(x); |
---|
| 105 | c = cos(x); |
---|
| 106 | ss = s-c; |
---|
| 107 | cc = s+c; |
---|
| 108 | if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
---|
| 109 | z = -cos(x+x); |
---|
| 110 | if ((s*c)<zero) cc = z/ss; |
---|
| 111 | else ss = z/cc; |
---|
| 112 | } |
---|
| 113 | /* |
---|
| 114 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
---|
| 115 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
---|
| 116 | */ |
---|
| 117 | if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x); |
---|
| 118 | else { |
---|
| 119 | u = pzero(x); v = qzero(x); |
---|
| 120 | z = invsqrtpi*(u*cc-v*ss)/sqrt(x); |
---|
| 121 | } |
---|
| 122 | return z; |
---|
| 123 | } |
---|
| 124 | if(ix<0x3f200000) { /* |x| < 2**-13 */ |
---|
| 125 | if(huge+x>one) { /* raise inexact if x != 0 */ |
---|
| 126 | if(ix<0x3e400000) return one; /* |x|<2**-27 */ |
---|
| 127 | else return one - 0.25*x*x; |
---|
| 128 | } |
---|
| 129 | } |
---|
| 130 | z = x*x; |
---|
| 131 | r = z*(R02+z*(R03+z*(R04+z*R05))); |
---|
| 132 | s = one+z*(S01+z*(S02+z*(S03+z*S04))); |
---|
| 133 | if(ix < 0x3FF00000) { /* |x| < 1.00 */ |
---|
| 134 | return one + z*(-0.25+(r/s)); |
---|
| 135 | } else { |
---|
| 136 | u = 0.5*x; |
---|
| 137 | return((one+u)*(one-u)+z*(r/s)); |
---|
| 138 | } |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | #ifdef __STDC__ |
---|
| 142 | static const double |
---|
| 143 | #else |
---|
| 144 | static double |
---|
| 145 | #endif |
---|
| 146 | u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ |
---|
| 147 | u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ |
---|
| 148 | u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ |
---|
| 149 | u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ |
---|
| 150 | u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ |
---|
| 151 | u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ |
---|
| 152 | u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ |
---|
| 153 | v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ |
---|
| 154 | v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ |
---|
| 155 | v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ |
---|
| 156 | v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ |
---|
| 157 | |
---|
| 158 | #ifdef __STDC__ |
---|
| 159 | double __ieee754_y0(double x) |
---|
| 160 | #else |
---|
| 161 | double __ieee754_y0(x) |
---|
| 162 | double x; |
---|
| 163 | #endif |
---|
| 164 | { |
---|
| 165 | double z, s,c,ss,cc,u,v; |
---|
| 166 | int n0,hx,ix,lx; |
---|
| 167 | |
---|
| 168 | n0 = 1^((*(int*)&one)>>29); |
---|
| 169 | hx = *(n0+(int*)&x); |
---|
| 170 | ix = 0x7fffffff&hx; |
---|
| 171 | lx = *(1-n0+(int*)&x); |
---|
| 172 | /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ |
---|
| 173 | if(ix>=0x7ff00000) return one/(x+x*x); |
---|
| 174 | if((ix|lx)==0) return -one/zero; |
---|
| 175 | if(hx<0) return zero/zero; |
---|
| 176 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
---|
| 177 | /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) |
---|
| 178 | * where x0 = x-pi/4 |
---|
| 179 | * Better formula: |
---|
| 180 | * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
---|
| 181 | * = 1/sqrt(2) * (sin(x) + cos(x)) |
---|
| 182 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
---|
| 183 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
---|
| 184 | * To avoid cancellation, use |
---|
| 185 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
---|
| 186 | * to compute the worse one. |
---|
| 187 | */ |
---|
| 188 | s = sin(x); |
---|
| 189 | c = cos(x); |
---|
| 190 | ss = s-c; |
---|
| 191 | cc = s+c; |
---|
| 192 | /* |
---|
| 193 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
---|
| 194 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
---|
| 195 | */ |
---|
| 196 | if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
---|
| 197 | z = -cos(x+x); |
---|
| 198 | if ((s*c)<zero) cc = z/ss; |
---|
| 199 | else ss = z/cc; |
---|
| 200 | } |
---|
| 201 | if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x); |
---|
| 202 | else { |
---|
| 203 | u = pzero(x); v = qzero(x); |
---|
| 204 | z = invsqrtpi*(u*ss+v*cc)/sqrt(x); |
---|
| 205 | } |
---|
| 206 | return z; |
---|
| 207 | } |
---|
| 208 | if(ix<=0x3e400000) { /* x < 2**-27 */ |
---|
| 209 | return(u00 + tpi*__ieee754_log(x)); |
---|
| 210 | } |
---|
| 211 | z = x*x; |
---|
| 212 | u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); |
---|
| 213 | v = one+z*(v01+z*(v02+z*(v03+z*v04))); |
---|
| 214 | return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x))); |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | /* The asymptotic expansions of pzero is |
---|
| 218 | * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. |
---|
| 219 | * For x >= 2, We approximate pzero by |
---|
| 220 | * pzero(x) = 1 + (R/S) |
---|
| 221 | * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 |
---|
| 222 | * S = 1 + pS0*s^2 + ... + pS4*s^10 |
---|
| 223 | * and |
---|
| 224 | * | pzero(x)-1-R/S | <= 2 ** ( -60.26) |
---|
| 225 | */ |
---|
| 226 | #ifdef __STDC__ |
---|
| 227 | static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
---|
| 228 | #else |
---|
| 229 | static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
---|
| 230 | #endif |
---|
| 231 | 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
---|
| 232 | -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ |
---|
| 233 | -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ |
---|
| 234 | -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ |
---|
| 235 | -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ |
---|
| 236 | -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ |
---|
| 237 | }; |
---|
| 238 | #ifdef __STDC__ |
---|
| 239 | static const double pS8[5] = { |
---|
| 240 | #else |
---|
| 241 | static double pS8[5] = { |
---|
| 242 | #endif |
---|
| 243 | 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ |
---|
| 244 | 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ |
---|
| 245 | 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ |
---|
| 246 | 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ |
---|
| 247 | 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ |
---|
| 248 | }; |
---|
| 249 | |
---|
| 250 | #ifdef __STDC__ |
---|
| 251 | static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
---|
| 252 | #else |
---|
| 253 | static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
---|
| 254 | #endif |
---|
| 255 | -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ |
---|
| 256 | -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ |
---|
| 257 | -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ |
---|
| 258 | -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ |
---|
| 259 | -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ |
---|
| 260 | -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ |
---|
| 261 | }; |
---|
| 262 | #ifdef __STDC__ |
---|
| 263 | static const double pS5[5] = { |
---|
| 264 | #else |
---|
| 265 | static double pS5[5] = { |
---|
| 266 | #endif |
---|
| 267 | 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ |
---|
| 268 | 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ |
---|
| 269 | 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ |
---|
| 270 | 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ |
---|
| 271 | 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ |
---|
| 272 | }; |
---|
| 273 | |
---|
| 274 | #ifdef __STDC__ |
---|
| 275 | static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
---|
| 276 | #else |
---|
| 277 | static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
---|
| 278 | #endif |
---|
| 279 | -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ |
---|
| 280 | -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ |
---|
| 281 | -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ |
---|
| 282 | -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ |
---|
| 283 | -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ |
---|
| 284 | -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ |
---|
| 285 | }; |
---|
| 286 | #ifdef __STDC__ |
---|
| 287 | static const double pS3[5] = { |
---|
| 288 | #else |
---|
| 289 | static double pS3[5] = { |
---|
| 290 | #endif |
---|
| 291 | 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ |
---|
| 292 | 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ |
---|
| 293 | 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ |
---|
| 294 | 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ |
---|
| 295 | 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ |
---|
| 296 | }; |
---|
| 297 | |
---|
| 298 | #ifdef __STDC__ |
---|
| 299 | static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
---|
| 300 | #else |
---|
| 301 | static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
---|
| 302 | #endif |
---|
| 303 | -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ |
---|
| 304 | -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ |
---|
| 305 | -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ |
---|
| 306 | -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ |
---|
| 307 | -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ |
---|
| 308 | -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ |
---|
| 309 | }; |
---|
| 310 | #ifdef __STDC__ |
---|
| 311 | static const double pS2[5] = { |
---|
| 312 | #else |
---|
| 313 | static double pS2[5] = { |
---|
| 314 | #endif |
---|
| 315 | 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ |
---|
| 316 | 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ |
---|
| 317 | 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ |
---|
| 318 | 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ |
---|
| 319 | 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ |
---|
| 320 | }; |
---|
| 321 | |
---|
| 322 | #ifdef __STDC__ |
---|
| 323 | static double pzero(double x) |
---|
| 324 | #else |
---|
| 325 | static double pzero(x) |
---|
| 326 | double x; |
---|
| 327 | #endif |
---|
| 328 | { |
---|
| 329 | #ifdef __STDC__ |
---|
| 330 | const double *p = (void*)0,*q = (void*)0; |
---|
| 331 | #else |
---|
| 332 | double *p,*q; |
---|
| 333 | #endif |
---|
| 334 | double z,r,s; |
---|
| 335 | int ix; |
---|
| 336 | ix = 0x7fffffff&(*( (((*(int*)&one)>>29)^1) + (int*)&x)); |
---|
| 337 | if(ix>=0x40200000) {p = pR8; q= pS8;} |
---|
| 338 | else if(ix>=0x40122E8B){p = pR5; q= pS5;} |
---|
| 339 | else if(ix>=0x4006DB6D){p = pR3; q= pS3;} |
---|
| 340 | else if(ix>=0x40000000){p = pR2; q= pS2;} |
---|
| 341 | z = one/(x*x); |
---|
| 342 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
---|
| 343 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
---|
| 344 | return one+ r/s; |
---|
| 345 | } |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | /* For x >= 8, the asymptotic expansions of qzero is |
---|
| 349 | * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. |
---|
| 350 | * We approximate pzero by |
---|
| 351 | * qzero(x) = s*(-1.25 + (R/S)) |
---|
| 352 | * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 |
---|
| 353 | * S = 1 + qS0*s^2 + ... + qS5*s^12 |
---|
| 354 | * and |
---|
| 355 | * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) |
---|
| 356 | */ |
---|
| 357 | #ifdef __STDC__ |
---|
| 358 | static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
---|
| 359 | #else |
---|
| 360 | static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
---|
| 361 | #endif |
---|
| 362 | 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
---|
| 363 | 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ |
---|
| 364 | 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ |
---|
| 365 | 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ |
---|
| 366 | 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ |
---|
| 367 | 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ |
---|
| 368 | }; |
---|
| 369 | #ifdef __STDC__ |
---|
| 370 | static const double qS8[6] = { |
---|
| 371 | #else |
---|
| 372 | static double qS8[6] = { |
---|
| 373 | #endif |
---|
| 374 | 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ |
---|
| 375 | 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ |
---|
| 376 | 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ |
---|
| 377 | 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ |
---|
| 378 | 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ |
---|
| 379 | -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ |
---|
| 380 | }; |
---|
| 381 | |
---|
| 382 | #ifdef __STDC__ |
---|
| 383 | static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
---|
| 384 | #else |
---|
| 385 | static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
---|
| 386 | #endif |
---|
| 387 | 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ |
---|
| 388 | 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ |
---|
| 389 | 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ |
---|
| 390 | 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ |
---|
| 391 | 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ |
---|
| 392 | 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ |
---|
| 393 | }; |
---|
| 394 | #ifdef __STDC__ |
---|
| 395 | static const double qS5[6] = { |
---|
| 396 | #else |
---|
| 397 | static double qS5[6] = { |
---|
| 398 | #endif |
---|
| 399 | 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ |
---|
| 400 | 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ |
---|
| 401 | 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ |
---|
| 402 | 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ |
---|
| 403 | 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ |
---|
| 404 | -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ |
---|
| 405 | }; |
---|
| 406 | |
---|
| 407 | #ifdef __STDC__ |
---|
| 408 | static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
---|
| 409 | #else |
---|
| 410 | static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
---|
| 411 | #endif |
---|
| 412 | 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ |
---|
| 413 | 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ |
---|
| 414 | 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ |
---|
| 415 | 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ |
---|
| 416 | 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ |
---|
| 417 | 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ |
---|
| 418 | }; |
---|
| 419 | #ifdef __STDC__ |
---|
| 420 | static const double qS3[6] = { |
---|
| 421 | #else |
---|
| 422 | static double qS3[6] = { |
---|
| 423 | #endif |
---|
| 424 | 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ |
---|
| 425 | 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ |
---|
| 426 | 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ |
---|
| 427 | 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ |
---|
| 428 | 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ |
---|
| 429 | -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ |
---|
| 430 | }; |
---|
| 431 | |
---|
| 432 | #ifdef __STDC__ |
---|
| 433 | static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
---|
| 434 | #else |
---|
| 435 | static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
---|
| 436 | #endif |
---|
| 437 | 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ |
---|
| 438 | 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ |
---|
| 439 | 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ |
---|
| 440 | 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ |
---|
| 441 | 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ |
---|
| 442 | 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ |
---|
| 443 | }; |
---|
| 444 | #ifdef __STDC__ |
---|
| 445 | static const double qS2[6] = { |
---|
| 446 | #else |
---|
| 447 | static double qS2[6] = { |
---|
| 448 | #endif |
---|
| 449 | 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ |
---|
| 450 | 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ |
---|
| 451 | 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ |
---|
| 452 | 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ |
---|
| 453 | 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ |
---|
| 454 | -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ |
---|
| 455 | }; |
---|
| 456 | |
---|
| 457 | #ifdef __STDC__ |
---|
| 458 | static double qzero(double x) |
---|
| 459 | #else |
---|
| 460 | static double qzero(x) |
---|
| 461 | double x; |
---|
| 462 | #endif |
---|
| 463 | { |
---|
| 464 | #ifdef __STDC__ |
---|
| 465 | const double *p = (void*)0,*q = (void*)0; |
---|
| 466 | #else |
---|
| 467 | double *p,*q; |
---|
| 468 | #endif |
---|
| 469 | double s,r,z; |
---|
| 470 | int ix; |
---|
| 471 | ix = 0x7fffffff&(*( (((*(int*)&one)>>29)^1) + (int*)&x)); |
---|
| 472 | if(ix>=0x40200000) {p = qR8; q= qS8;} |
---|
| 473 | else if(ix>=0x40122E8B){p = qR5; q= qS5;} |
---|
| 474 | else if(ix>=0x4006DB6D){p = qR3; q= qS3;} |
---|
| 475 | else if(ix>=0x40000000){p = qR2; q= qS2;} |
---|
| 476 | z = one/(x*x); |
---|
| 477 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
---|
| 478 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
---|
| 479 | return (-.125 + r/s)/x; |
---|
| 480 | } |
---|