[1] | 1 | |
---|
| 2 | /* @(#)e_jn.c 5.1 93/09/24 */ |
---|
| 3 | /* |
---|
| 4 | * ==================================================== |
---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
| 6 | * |
---|
| 7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
| 8 | * Permission to use, copy, modify, and distribute this |
---|
| 9 | * software is freely granted, provided that this notice |
---|
| 10 | * is preserved. |
---|
| 11 | * ==================================================== |
---|
| 12 | */ |
---|
| 13 | |
---|
| 14 | /* |
---|
| 15 | * __ieee754_jn(n, x), __ieee754_yn(n, x) |
---|
| 16 | * floating point Bessel's function of the 1st and 2nd kind |
---|
| 17 | * of order n |
---|
| 18 | * |
---|
| 19 | * Special cases: |
---|
| 20 | * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
---|
| 21 | * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
---|
| 22 | * Note 2. About jn(n,x), yn(n,x) |
---|
| 23 | * For n=0, j0(x) is called, |
---|
| 24 | * for n=1, j1(x) is called, |
---|
| 25 | * for n<x, forward recursion us used starting |
---|
| 26 | * from values of j0(x) and j1(x). |
---|
| 27 | * for n>x, a continued fraction approximation to |
---|
| 28 | * j(n,x)/j(n-1,x) is evaluated and then backward |
---|
| 29 | * recursion is used starting from a supposed value |
---|
| 30 | * for j(n,x). The resulting value of j(0,x) is |
---|
| 31 | * compared with the actual value to correct the |
---|
| 32 | * supposed value of j(n,x). |
---|
| 33 | * |
---|
| 34 | * yn(n,x) is similar in all respects, except |
---|
| 35 | * that forward recursion is used for all |
---|
| 36 | * values of n>1. |
---|
| 37 | * |
---|
| 38 | */ |
---|
| 39 | |
---|
| 40 | #include <libm/fdlibm.h> |
---|
| 41 | |
---|
| 42 | #ifdef __STDC__ |
---|
| 43 | static const double |
---|
| 44 | #else |
---|
| 45 | static double |
---|
| 46 | #endif |
---|
| 47 | invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
---|
| 48 | two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
---|
| 49 | one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ |
---|
| 50 | |
---|
| 51 | static double zero = 0.00000000000000000000e+00; |
---|
| 52 | |
---|
| 53 | #ifdef __STDC__ |
---|
| 54 | double __ieee754_jn(int n, double x) |
---|
| 55 | #else |
---|
| 56 | double __ieee754_jn(n,x) |
---|
| 57 | int n; double x; |
---|
| 58 | #endif |
---|
| 59 | { |
---|
| 60 | int i,n0,hx,ix,lx, sgn; |
---|
| 61 | double a, b, temp=0, di; |
---|
| 62 | double z, w; |
---|
| 63 | |
---|
| 64 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
---|
| 65 | * Thus, J(-n,x) = J(n,-x) |
---|
| 66 | */ |
---|
| 67 | n0 = 1^((*(int*)&one)>>29); |
---|
| 68 | hx = *(n0+(int*)&x); |
---|
| 69 | ix = 0x7fffffff&hx; |
---|
| 70 | lx = *(1-n0+(int*)&x); |
---|
| 71 | /* if J(n,NaN) is NaN */ |
---|
| 72 | if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x; |
---|
| 73 | if(n<0){ |
---|
| 74 | n = -n; |
---|
| 75 | x = -x; |
---|
| 76 | hx ^= 0x80000000; |
---|
| 77 | } |
---|
| 78 | if(n==0) return(__ieee754_j0(x)); |
---|
| 79 | if(n==1) return(__ieee754_j1(x)); |
---|
| 80 | sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
---|
| 81 | x = fabs(x); |
---|
| 82 | if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ |
---|
| 83 | b = zero; |
---|
| 84 | else if((double)n<=x) { |
---|
| 85 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
---|
| 86 | if(ix>=0x52D00000) { /* x > 2**302 */ |
---|
| 87 | /* (x >> n**2) |
---|
| 88 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
---|
| 89 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
---|
| 90 | * Let s=sin(x), c=cos(x), |
---|
| 91 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
---|
| 92 | * |
---|
| 93 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
---|
| 94 | * ---------------------------------- |
---|
| 95 | * 0 s-c c+s |
---|
| 96 | * 1 -s-c -c+s |
---|
| 97 | * 2 -s+c -c-s |
---|
| 98 | * 3 s+c c-s |
---|
| 99 | */ |
---|
| 100 | switch(n&3) { |
---|
| 101 | case 0: temp = cos(x)+sin(x); break; |
---|
| 102 | case 1: temp = -cos(x)+sin(x); break; |
---|
| 103 | case 2: temp = -cos(x)-sin(x); break; |
---|
| 104 | case 3: temp = cos(x)-sin(x); break; |
---|
| 105 | } |
---|
| 106 | b = invsqrtpi*temp/sqrt(x); |
---|
| 107 | } else { |
---|
| 108 | a = __ieee754_j0(x); |
---|
| 109 | b = __ieee754_j1(x); |
---|
| 110 | for(i=1;i<n;i++){ |
---|
| 111 | temp = b; |
---|
| 112 | b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
---|
| 113 | a = temp; |
---|
| 114 | } |
---|
| 115 | } |
---|
| 116 | } else { |
---|
| 117 | if(ix<0x3e100000) { /* x < 2**-29 */ |
---|
| 118 | /* x is tiny, return the first Taylor expansion of J(n,x) |
---|
| 119 | * J(n,x) = 1/n!*(x/2)^n - ... |
---|
| 120 | */ |
---|
| 121 | if(n>33) /* underflow */ |
---|
| 122 | b = zero; |
---|
| 123 | else { |
---|
| 124 | temp = x*0.5; b = temp; |
---|
| 125 | for (a=one,i=2;i<=n;i++) { |
---|
| 126 | a *= (double)i; /* a = n! */ |
---|
| 127 | b *= temp; /* b = (x/2)^n */ |
---|
| 128 | } |
---|
| 129 | b = b/a; |
---|
| 130 | } |
---|
| 131 | } else { |
---|
| 132 | /* use backward recurrence */ |
---|
| 133 | /* x x^2 x^2 |
---|
| 134 | * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
---|
| 135 | * 2n - 2(n+1) - 2(n+2) |
---|
| 136 | * |
---|
| 137 | * 1 1 1 |
---|
| 138 | * (for large x) = ---- ------ ------ ..... |
---|
| 139 | * 2n 2(n+1) 2(n+2) |
---|
| 140 | * -- - ------ - ------ - |
---|
| 141 | * x x x |
---|
| 142 | * |
---|
| 143 | * Let w = 2n/x and h=2/x, then the above quotient |
---|
| 144 | * is equal to the continued fraction: |
---|
| 145 | * 1 |
---|
| 146 | * = ----------------------- |
---|
| 147 | * 1 |
---|
| 148 | * w - ----------------- |
---|
| 149 | * 1 |
---|
| 150 | * w+h - --------- |
---|
| 151 | * w+2h - ... |
---|
| 152 | * |
---|
| 153 | * To determine how many terms needed, let |
---|
| 154 | * Q(0) = w, Q(1) = w(w+h) - 1, |
---|
| 155 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
---|
| 156 | * When Q(k) > 1e4 good for single |
---|
| 157 | * When Q(k) > 1e9 good for double |
---|
| 158 | * When Q(k) > 1e17 good for quadruple |
---|
| 159 | */ |
---|
| 160 | /* determine k */ |
---|
| 161 | double t,v; |
---|
| 162 | double q0,q1,h,tmp; int k,m; |
---|
| 163 | w = (n+n)/(double)x; h = 2.0/(double)x; |
---|
| 164 | q0 = w; z = w+h; q1 = w*z - 1.0; k=1; |
---|
| 165 | while(q1<1.0e9) { |
---|
| 166 | k += 1; z += h; |
---|
| 167 | tmp = z*q1 - q0; |
---|
| 168 | q0 = q1; |
---|
| 169 | q1 = tmp; |
---|
| 170 | } |
---|
| 171 | m = n+n; |
---|
| 172 | for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
---|
| 173 | a = t; |
---|
| 174 | b = one; |
---|
| 175 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
---|
| 176 | * Hence, if n*(log(2n/x)) > ... |
---|
| 177 | * single 8.8722839355e+01 |
---|
| 178 | * double 7.09782712893383973096e+02 |
---|
| 179 | * long double 1.1356523406294143949491931077970765006170e+04 |
---|
| 180 | * then recurrent value may overflow and the result is |
---|
| 181 | * likely underflow to zero |
---|
| 182 | */ |
---|
| 183 | tmp = n; |
---|
| 184 | v = two/x; |
---|
| 185 | tmp = tmp*__ieee754_log(fabs(v*tmp)); |
---|
| 186 | if(tmp<7.09782712893383973096e+02) { |
---|
| 187 | for(i=n-1,di=(double)(i+i);i>0;i--){ |
---|
| 188 | temp = b; |
---|
| 189 | b *= di; |
---|
| 190 | b = b/x - a; |
---|
| 191 | a = temp; |
---|
| 192 | di -= two; |
---|
| 193 | } |
---|
| 194 | } else { |
---|
| 195 | for(i=n-1,di=(double)(i+i);i>0;i--){ |
---|
| 196 | temp = b; |
---|
| 197 | b *= di; |
---|
| 198 | b = b/x - a; |
---|
| 199 | a = temp; |
---|
| 200 | di -= two; |
---|
| 201 | /* scale b to avoid spurious overflow */ |
---|
| 202 | if(b>1e100) { |
---|
| 203 | a /= b; |
---|
| 204 | t /= b; |
---|
| 205 | b = one; |
---|
| 206 | } |
---|
| 207 | } |
---|
| 208 | } |
---|
| 209 | b = (t*__ieee754_j0(x)/b); |
---|
| 210 | } |
---|
| 211 | } |
---|
| 212 | if(sgn==1) return -b; else return b; |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | #ifdef __STDC__ |
---|
| 216 | double __ieee754_yn(int n, double x) |
---|
| 217 | #else |
---|
| 218 | double __ieee754_yn(n,x) |
---|
| 219 | int n; double x; |
---|
| 220 | #endif |
---|
| 221 | { |
---|
| 222 | int i,n0,hx,ix,lx; |
---|
| 223 | int sign; |
---|
| 224 | double a, b, temp=0; |
---|
| 225 | |
---|
| 226 | n0 = 1^((*(int*)&one)>>29); |
---|
| 227 | hx = *(n0+(int*)&x); |
---|
| 228 | ix = 0x7fffffff&hx; |
---|
| 229 | lx = *(1-n0+(int*)&x); |
---|
| 230 | /* if Y(n,NaN) is NaN */ |
---|
| 231 | if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x; |
---|
| 232 | if((ix|lx)==0) return -one/zero; |
---|
| 233 | if(hx<0) return zero/zero; |
---|
| 234 | sign = 1; |
---|
| 235 | if(n<0){ |
---|
| 236 | n = -n; |
---|
| 237 | sign = 1 - ((n&1)<<2); |
---|
| 238 | } |
---|
| 239 | if(n==0) return(__ieee754_y0(x)); |
---|
| 240 | if(n==1) return(sign*__ieee754_y1(x)); |
---|
| 241 | if(ix==0x7ff00000) return zero; |
---|
| 242 | if(ix>=0x52D00000) { /* x > 2**302 */ |
---|
| 243 | /* (x >> n**2) |
---|
| 244 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
---|
| 245 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
---|
| 246 | * Let s=sin(x), c=cos(x), |
---|
| 247 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
---|
| 248 | * |
---|
| 249 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
---|
| 250 | * ---------------------------------- |
---|
| 251 | * 0 s-c c+s |
---|
| 252 | * 1 -s-c -c+s |
---|
| 253 | * 2 -s+c -c-s |
---|
| 254 | * 3 s+c c-s |
---|
| 255 | */ |
---|
| 256 | switch(n&3) { |
---|
| 257 | case 0: temp = sin(x)-cos(x); break; |
---|
| 258 | case 1: temp = -sin(x)-cos(x); break; |
---|
| 259 | case 2: temp = -sin(x)+cos(x); break; |
---|
| 260 | case 3: temp = sin(x)+cos(x); break; |
---|
| 261 | } |
---|
| 262 | b = invsqrtpi*temp/sqrt(x); |
---|
| 263 | } else { |
---|
| 264 | a = __ieee754_y0(x); |
---|
| 265 | b = __ieee754_y1(x); |
---|
| 266 | /* quit if b is -inf */ |
---|
| 267 | for(i=1;i<n && ((unsigned int)(*(n0+(int*)&b))!= 0xfff00000);i++){ |
---|
| 268 | temp = b; |
---|
| 269 | b = ((double)(i+i)/x)*b - a; |
---|
| 270 | a = temp; |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | if(sign>0) return b; else return -b; |
---|
| 274 | } |
---|