1 | |
---|
2 | /* @(#)e_log.c 5.1 93/09/24 */ |
---|
3 | /* |
---|
4 | * ==================================================== |
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
6 | * |
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
8 | * Permission to use, copy, modify, and distribute this |
---|
9 | * software is freely granted, provided that this notice |
---|
10 | * is preserved. |
---|
11 | * ==================================================== |
---|
12 | */ |
---|
13 | |
---|
14 | /* __ieee754_log(x) |
---|
15 | * Return the logrithm of x |
---|
16 | * |
---|
17 | * Method : |
---|
18 | * 1. Argument Reduction: find k and f such that |
---|
19 | * x = 2^k * (1+f), |
---|
20 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
---|
21 | * |
---|
22 | * 2. Approximation of log(1+f). |
---|
23 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
---|
24 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
---|
25 | * = 2s + s*R |
---|
26 | * We use a special Reme algorithm on [0,0.1716] to generate |
---|
27 | * a polynomial of degree 14 to approximate R The maximum error |
---|
28 | * of this polynomial approximation is bounded by 2**-58.45. In |
---|
29 | * other words, |
---|
30 | * 2 4 6 8 10 12 14 |
---|
31 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
---|
32 | * (the values of Lg1 to Lg7 are listed in the program) |
---|
33 | * and |
---|
34 | * | 2 14 | -58.45 |
---|
35 | * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
---|
36 | * | | |
---|
37 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
---|
38 | * In order to guarantee error in log below 1ulp, we compute log |
---|
39 | * by |
---|
40 | * log(1+f) = f - s*(f - R) (if f is not too large) |
---|
41 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
---|
42 | * |
---|
43 | * 3. Finally, log(x) = k*ln2 + log(1+f). |
---|
44 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
---|
45 | * Here ln2 is split into two floating point number: |
---|
46 | * ln2_hi + ln2_lo, |
---|
47 | * where n*ln2_hi is always exact for |n| < 2000. |
---|
48 | * |
---|
49 | * Special cases: |
---|
50 | * log(x) is NaN with signal if x < 0 (including -INF) ; |
---|
51 | * log(+INF) is +INF; log(0) is -INF with signal; |
---|
52 | * log(NaN) is that NaN with no signal. |
---|
53 | * |
---|
54 | * Accuracy: |
---|
55 | * according to an error analysis, the error is always less than |
---|
56 | * 1 ulp (unit in the last place). |
---|
57 | * |
---|
58 | * Constants: |
---|
59 | * The hexadecimal values are the intended ones for the following |
---|
60 | * constants. The decimal values may be used, provided that the |
---|
61 | * compiler will convert from decimal to binary accurately enough |
---|
62 | * to produce the hexadecimal values shown. |
---|
63 | */ |
---|
64 | |
---|
65 | #include <libm/fdlibm.h> |
---|
66 | |
---|
67 | #ifdef __STDC__ |
---|
68 | static const double |
---|
69 | #else |
---|
70 | static double |
---|
71 | #endif |
---|
72 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
---|
73 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
---|
74 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
---|
75 | Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
---|
76 | Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
---|
77 | Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
---|
78 | Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
---|
79 | Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
---|
80 | Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
---|
81 | Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
---|
82 | |
---|
83 | static double zero = 0.0; |
---|
84 | |
---|
85 | #ifdef __STDC__ |
---|
86 | double __ieee754_log(double x) |
---|
87 | #else |
---|
88 | double __ieee754_log(x) |
---|
89 | double x; |
---|
90 | #endif |
---|
91 | { |
---|
92 | double hfsq,f,s,z,R,w,t1,t2,dk; |
---|
93 | int k,hx,n0,i,j; |
---|
94 | unsigned lx; |
---|
95 | |
---|
96 | n0 = (*((int*)&two54)>>30)^1; /* high word index */ |
---|
97 | hx = *(n0+(int*)&x); /* high word of x */ |
---|
98 | lx = *(1-n0+(int*)&x); /* low word of x */ |
---|
99 | |
---|
100 | k=0; |
---|
101 | if (hx < 0x00100000) { /* x < 2**-1022 */ |
---|
102 | if (((hx&0x7fffffff)|lx)==0) |
---|
103 | return -two54/zero; /* log(+-0)=-inf */ |
---|
104 | if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
---|
105 | k -= 54; x *= two54; /* subnormal number, scale up x */ |
---|
106 | hx = *(n0+(int*)&x); /* high word of x */ |
---|
107 | } |
---|
108 | if (hx >= 0x7ff00000) return x+x; |
---|
109 | k += (hx>>20)-1023; |
---|
110 | hx &= 0x000fffff; |
---|
111 | i = (hx+0x95f64)&0x100000; |
---|
112 | *(n0+(int*)&x) = hx|(i^0x3ff00000); /* normalize x or x/2 */ |
---|
113 | k += (i>>20); |
---|
114 | f = x-1.0; |
---|
115 | if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ |
---|
116 | if(f==zero) |
---|
117 | { |
---|
118 | if(k==0) |
---|
119 | return zero; |
---|
120 | } |
---|
121 | else |
---|
122 | { |
---|
123 | dk=(double)k; |
---|
124 | return dk*ln2_hi+dk*ln2_lo; |
---|
125 | } |
---|
126 | R = f*f*(0.5-0.33333333333333333*f); |
---|
127 | if(k==0) |
---|
128 | return f-R; |
---|
129 | else |
---|
130 | { |
---|
131 | dk=(double)k; |
---|
132 | return dk*ln2_hi-((R-dk*ln2_lo)-f); |
---|
133 | } |
---|
134 | } |
---|
135 | s = f/(2.0+f); |
---|
136 | dk = (double)k; |
---|
137 | z = s*s; |
---|
138 | i = hx-0x6147a; |
---|
139 | w = z*z; |
---|
140 | j = 0x6b851-hx; |
---|
141 | t1= w*(Lg2+w*(Lg4+w*Lg6)); |
---|
142 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
---|
143 | i |= j; |
---|
144 | R = t2+t1; |
---|
145 | if(i>0) { |
---|
146 | hfsq=0.5*f*f; |
---|
147 | if(k==0) return f-(hfsq-s*(hfsq+R)); else |
---|
148 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); |
---|
149 | } else { |
---|
150 | if(k==0) return f-s*(f-R); else |
---|
151 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); |
---|
152 | } |
---|
153 | } |
---|