source: trunk/sys/libm/e_pow.c @ 69

Last change on this file since 69 was 1, checked in by alain, 8 years ago

First import

File size: 9.6 KB
Line 
1
2/* @(#)e_pow.c 5.1 93/09/24 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/* __ieee754_pow(x,y) return x**y
15 *
16 *                    n
17 * Method:  Let x =  2   * (1+f)
18 *      1. Compute and return log2(x) in two pieces:
19 *              log2(x) = w1 + w2,
20 *         where w1 has 53-24 = 29 bit trailing zeros.
21 *      2. Perform y*log2(x) = n+y' by simulating muti-precision
22 *         arithmetic, where |y'|<=0.5.
23 *      3. Return x**y = 2**n*exp(y'*log2)
24 *
25 * Special cases:
26 *      1.  (anything) ** 0  is 1
27 *      2.  (anything) ** 1  is itself
28 *      3.  (anything) ** NAN is NAN
29 *      4.  NAN ** (anything except 0) is NAN
30 *      5.  +-(|x| > 1) **  +INF is +INF
31 *      6.  +-(|x| > 1) **  -INF is +0
32 *      7.  +-(|x| < 1) **  +INF is +0
33 *      8.  +-(|x| < 1) **  -INF is +INF
34 *      9.  +-1         ** +-INF is NAN
35 *      10. +0 ** (+anything except 0, NAN)               is +0
36 *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
37 *      12. +0 ** (-anything except 0, NAN)               is +INF
38 *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
39 *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
40 *      15. +INF ** (+anything except 0,NAN) is +INF
41 *      16. +INF ** (-anything except 0,NAN) is +0
42 *      17. -INF ** (anything)  = -0 ** (-anything)
43 *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
44 *      19. (-anything except 0 and inf) ** (non-integer) is NAN
45 *
46 * Accuracy:
47 *      pow(x,y) returns x**y nearly rounded. In particular
48 *                      pow(integer,integer)
49 *      always returns the correct integer provided it is
50 *      representable.
51 *
52 * Constants :
53 * The hexadecimal values are the intended ones for the following
54 * constants. The decimal values may be used, provided that the
55 * compiler will convert from decimal to binary accurately enough
56 * to produce the hexadecimal values shown.
57 */
58
59#include <libm/fdlibm.h>
60
61#ifdef __STDC__
62static const double 
63#else
64static double 
65#endif
66bp[] = {1.0, 1.5,},
67dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
68dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
69zero    =  0.0,
70one     =  1.0,
71two     =  2.0,
72two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
73huge    =  1.0e300,
74tiny    =  1.0e-300,
75        /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
76L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
77L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
78L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
79L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
80L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
81L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
82P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
83P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
84P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
85P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
86P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
87lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
88lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
89lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
90ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
91cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
92cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
93cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
94ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
95ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
96ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
97
98#ifdef __STDC__
99        double __ieee754_pow(double x, double y)
100#else
101        double __ieee754_pow(x,y)
102        double x, y;
103#endif
104{
105        double z,ax,z_h,z_l,p_h,p_l;
106        double y1,t1,t2,r,s,t,u,v,w;
107        int i0,i1,i,j,k,yisint,n;
108        int hx,hy,ix,iy;
109        unsigned lx,ly;
110
111        i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
112        hx = *(i0+(int*)&x); lx = *(i1+(int*)&x);
113        hy = *(i0+(int*)&y); ly = *(i1+(int*)&y);
114        ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
115
116    /* y==zero: x**0 = 1 */
117        if((iy|ly)==0) return one;     
118
119    /* +-NaN return x+y */
120        if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
121           iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 
122                return x+y;     
123
124    /* determine if y is an odd int when x < 0
125     * yisint = 0       ... y is not an integer
126     * yisint = 1       ... y is an odd int
127     * yisint = 2       ... y is an even int
128     */
129        yisint  = 0;
130        if(hx<0) {     
131            if(iy>=0x43400000) yisint = 2; /* even integer y */
132            else if(iy>=0x3ff00000) {
133                k = (iy>>20)-0x3ff;        /* exponent */
134                if(k>20) {
135                    j = ly>>(52-k);
136                    if((unsigned)(j << (52-k)) == ly) yisint = 2-(j&1);
137                } else if(ly==0) {
138                    j = iy>>(20-k);
139                    if((j<<(20-k))==iy) yisint = 2-(j&1);
140                }
141            }           
142        } 
143
144    /* special value of y */
145        if(ly==0) {     
146            if (iy==0x7ff00000) {       /* y is +-inf */
147                if(((ix-0x3ff00000)|lx)==0)
148                    return  y - y;      /* inf**+-1 is NaN */
149                else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
150                    return (hy>=0)? y: zero;
151                else                    /* (|x|<1)**-,+inf = inf,0 */
152                    return (hy<0)?-y: zero;
153            } 
154            if(iy==0x3ff00000) {        /* y is  +-1 */
155                if(hy<0) return one/x; else return x;
156            }
157            if(hy==0x40000000) return x*x; /* y is  2 */
158            if(hy==0x3fe00000) {        /* y is  0.5 */
159                if(hx>=0)       /* x >= +0 */
160                return sqrt(x); 
161            }
162        }
163
164        ax   = fabs(x);
165    /* special value of x */
166        if(lx==0) {
167            if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
168                z = ax;                 /*x is +-0,+-inf,+-1*/
169                if(hy<0) z = one/z;     /* z = (1/|x|) */
170                if(hx<0) {
171                    if(((ix-0x3ff00000)|yisint)==0) {
172                        z = (z-z)/(z-z); /* (-1)**non-int is NaN */
173                    } else if(yisint==1) 
174                        z = -z;         /* (x<0)**odd = -(|x|**odd) */
175                }
176                return z;
177            }
178        }
179   
180    /* (x<0)**(non-int) is NaN */
181        if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x);
182
183    /* |y| is huge */
184        if(iy>0x41e00000) { /* if |y| > 2**31 */
185            if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
186                if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
187                if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
188            }
189        /* over/underflow if x is not close to one */
190            if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
191            if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
192        /* now |1-x| is tiny <= 2**-20, suffice to compute
193           log(x) by x-x^2/2+x^3/3-x^4/4 */
194            t = x-1;            /* t has 20 trailing zeros */
195            w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
196            u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
197            v = t*ivln2_l-w*ivln2;
198            t1 = u+v;
199            *(i1+(int*)&t1) = 0;
200            t2 = v-(t1-u);
201        } else {
202            double s2,s_h,s_l,t_h,t_l;
203            n = 0;
204        /* take care subnormal number */
205            if(ix<0x00100000)
206                {ax *= two53; n -= 53; ix = *(i0+(int*)&ax); }
207            n  += ((ix)>>20)-0x3ff;
208            j  = ix&0x000fffff;
209        /* determine interval */
210            ix = j|0x3ff00000;          /* normalize ix */
211            if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
212            else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
213            else {k=0;n+=1;ix -= 0x00100000;}
214            *(i0+(int*)&ax) = ix;
215
216        /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
217            u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
218            v = one/(ax+bp[k]);
219            s = u*v;
220            s_h = s;
221            *(i1+(int*)&s_h) = 0;
222        /* t_h=ax+bp[k] High */
223            t_h = zero;
224            *(i0+(int*)&t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); 
225            t_l = ax - (t_h-bp[k]);
226            s_l = v*((u-s_h*t_h)-s_h*t_l);
227        /* compute log(ax) */
228            s2 = s*s;
229            r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
230            r += s_l*(s_h+s);
231            s2  = s_h*s_h;
232            t_h = 3.0+s2+r;
233            *(i1+(int*)&t_h) = 0;
234            t_l = r-((t_h-3.0)-s2);
235        /* u+v = s*(1+...) */
236            u = s_h*t_h;
237            v = s_l*t_h+t_l*s;
238        /* 2/(3log2)*(s+...) */
239            p_h = u+v;
240            *(i1+(int*)&p_h) = 0;
241            p_l = v-(p_h-u);
242            z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
243            z_l = cp_l*p_h+p_l*cp+dp_l[k];
244        /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
245            t = (double)n;
246            t1 = (((z_h+z_l)+dp_h[k])+t);
247            *(i1+(int*)&t1) = 0;
248            t2 = z_l-(((t1-t)-dp_h[k])-z_h);
249        }
250
251        s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
252        if((((hx>>31)+1)|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
253
254    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
255        y1  = y;
256        *(i1+(int*)&y1) = 0;
257        p_l = (y-y1)*t1+y*t2;
258        p_h = y1*t1;
259        z = p_l+p_h;
260        j = *(i0+(int*)&z);
261        i = *(i1+(int*)&z);
262        if (j>=0x40900000) {                            /* z >= 1024 */
263            if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
264                return s*huge*huge;                     /* overflow */
265            else {
266                if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */
267            }
268        } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
269            if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
270                return s*tiny*tiny;             /* underflow */
271            else {
272                if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */
273            }
274        }
275    /*
276     * compute 2**(p_h+p_l)
277     */
278        i = j&0x7fffffff;
279        k = (i>>20)-0x3ff;
280        n = 0;
281        if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
282            n = j+(0x00100000>>(k+1));
283            k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
284            t = zero;
285            *(i0+(int*)&t) = (n&~(0x000fffff>>k));
286            n = ((n&0x000fffff)|0x00100000)>>(20-k);
287            if(j<0) n = -n;
288            p_h -= t;
289        } 
290        t = p_l+p_h;
291        *(i1+(int*)&t) = 0;
292        u = t*lg2_h;
293        v = (p_l-(t-p_h))*lg2+t*lg2_l;
294        z = u+v;
295        w = v-(z-u);
296        t  = z*z;
297        t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
298        r  = (z*t1)/(t1-two)-(w+z*w);
299        z  = one-(r-z);
300        j  = *(i0+(int*)&z);
301        j += (n<<20);
302        if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
303        else *(i0+(int*)&z) += (n<<20);
304        return s*z;
305}
Note: See TracBrowser for help on using the repository browser.