1 | |
---|
2 | /* @(#)k_tan.c 5.1 93/09/24 */ |
---|
3 | /* |
---|
4 | * ==================================================== |
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
6 | * |
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
8 | * Permission to use, copy, modify, and distribute this |
---|
9 | * software is freely granted, provided that this notice |
---|
10 | * is preserved. |
---|
11 | * ==================================================== |
---|
12 | */ |
---|
13 | |
---|
14 | /* __kernel_tan( x, y, k ) |
---|
15 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
---|
16 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
---|
17 | * Input y is the tail of x. |
---|
18 | * Input k indicates whether tan (if k=1) or |
---|
19 | * -1/tan (if k= -1) is returned. |
---|
20 | * |
---|
21 | * Algorithm |
---|
22 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
---|
23 | * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
---|
24 | * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
---|
25 | * [0,0.67434] |
---|
26 | * 3 27 |
---|
27 | * tan(x) ~ x + T1*x + ... + T13*x |
---|
28 | * where |
---|
29 | * |
---|
30 | * |tan(x) 2 4 26 | -59.2 |
---|
31 | * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
---|
32 | * | x | |
---|
33 | * |
---|
34 | * Note: tan(x+y) = tan(x) + tan'(x)*y |
---|
35 | * ~ tan(x) + (1+x*x)*y |
---|
36 | * Therefore, for better accuracy in computing tan(x+y), let |
---|
37 | * 3 2 2 2 2 |
---|
38 | * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
---|
39 | * then |
---|
40 | * 3 2 |
---|
41 | * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
---|
42 | * |
---|
43 | * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
---|
44 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
---|
45 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
---|
46 | */ |
---|
47 | |
---|
48 | #include <libm/fdlibm.h> |
---|
49 | #ifdef __STDC__ |
---|
50 | static const double |
---|
51 | #else |
---|
52 | static double |
---|
53 | #endif |
---|
54 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
---|
55 | pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
---|
56 | pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
---|
57 | T[] = { |
---|
58 | 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
---|
59 | 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
---|
60 | 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
---|
61 | 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
---|
62 | 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
---|
63 | 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
---|
64 | 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
---|
65 | 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
---|
66 | 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
---|
67 | 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
---|
68 | 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
---|
69 | -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
---|
70 | 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
---|
71 | }; |
---|
72 | |
---|
73 | #ifdef __STDC__ |
---|
74 | double __kernel_tan(double x, double y, int iy) |
---|
75 | #else |
---|
76 | double __kernel_tan(x, y, iy) |
---|
77 | double x,y; int iy; |
---|
78 | #endif |
---|
79 | { |
---|
80 | double z,r,v,w,s; |
---|
81 | int n0,ix,hx; |
---|
82 | n0 = ((*(int*)&one)>>29)^1; /* high word index */ |
---|
83 | hx = *(n0+(int*)&x); /* high word of x */ |
---|
84 | ix = hx&0x7fffffff; /* high word of |x| */ |
---|
85 | if(ix<0x3e300000) /* x < 2**-28 */ |
---|
86 | {if((int)x==0) { /* generate inexact */ |
---|
87 | if(((ix|*(1-n0+(int*)&x))|(iy+1))==0) return one/fabs(x); |
---|
88 | else return (iy==1)? x: -one/x; |
---|
89 | } |
---|
90 | } |
---|
91 | if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
---|
92 | if(hx<0) {x = -x; y = -y;} |
---|
93 | z = pio4-x; |
---|
94 | w = pio4lo-y; |
---|
95 | x = z+w; y = 0.0; |
---|
96 | } |
---|
97 | z = x*x; |
---|
98 | w = z*z; |
---|
99 | /* Break x^5*(T[1]+x^2*T[2]+...) into |
---|
100 | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
---|
101 | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
---|
102 | */ |
---|
103 | r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
---|
104 | v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
---|
105 | s = z*x; |
---|
106 | r = y + z*(s*(r+v)+y); |
---|
107 | r += T[0]*s; |
---|
108 | w = x+r; |
---|
109 | if(ix>=0x3FE59428) { |
---|
110 | v = (double)iy; |
---|
111 | return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
---|
112 | } |
---|
113 | if(iy==1) return w; |
---|
114 | else { /* if allow error up to 2 ulp, |
---|
115 | simply return -1.0/(x+r) here */ |
---|
116 | /* compute -1.0/(x+r) accurately */ |
---|
117 | double a,t; |
---|
118 | z = w; |
---|
119 | *(1-n0+(int*)&z) = 0; |
---|
120 | v = r-(z - x); /* z+v = r+x */ |
---|
121 | t = a = -1.0/w; /* a = -1.0/w */ |
---|
122 | *(1-n0+(int*)&t) = 0; |
---|
123 | s = 1.0+t*z; |
---|
124 | return t+a*(s+t*v); |
---|
125 | } |
---|
126 | } |
---|