[1] | 1 | |
---|
| 2 | /* @(#)s_atan.c 5.1 93/09/24 */ |
---|
| 3 | /* |
---|
| 4 | * ==================================================== |
---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
| 6 | * |
---|
| 7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
| 8 | * Permission to use, copy, modify, and distribute this |
---|
| 9 | * software is freely granted, provided that this notice |
---|
| 10 | * is preserved. |
---|
| 11 | * ==================================================== |
---|
| 12 | * |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /* atan(x) |
---|
| 16 | * Method |
---|
| 17 | * 1. Reduce x to positive by atan(x) = -atan(-x). |
---|
| 18 | * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
---|
| 19 | * is further reduced to one of the following intervals and the |
---|
| 20 | * arctangent of t is evaluated by the corresponding formula: |
---|
| 21 | * |
---|
| 22 | * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
---|
| 23 | * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
---|
| 24 | * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
---|
| 25 | * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
---|
| 26 | * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
---|
| 27 | * |
---|
| 28 | * Constants: |
---|
| 29 | * The hexadecimal values are the intended ones for the following |
---|
| 30 | * constants. The decimal values may be used, provided that the |
---|
| 31 | * compiler will convert from decimal to binary accurately enough |
---|
| 32 | * to produce the hexadecimal values shown. |
---|
| 33 | */ |
---|
| 34 | |
---|
| 35 | #include <libm/fdlibm.h> |
---|
| 36 | |
---|
| 37 | #ifdef __STDC__ |
---|
| 38 | static const double atanhi[] = { |
---|
| 39 | #else |
---|
| 40 | static double atanhi[] = { |
---|
| 41 | #endif |
---|
| 42 | 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
---|
| 43 | 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
---|
| 44 | 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
---|
| 45 | 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
---|
| 46 | }; |
---|
| 47 | |
---|
| 48 | #ifdef __STDC__ |
---|
| 49 | static const double atanlo[] = { |
---|
| 50 | #else |
---|
| 51 | static double atanlo[] = { |
---|
| 52 | #endif |
---|
| 53 | 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
---|
| 54 | 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
---|
| 55 | 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
---|
| 56 | 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
---|
| 57 | }; |
---|
| 58 | |
---|
| 59 | #ifdef __STDC__ |
---|
| 60 | static const double aT[] = { |
---|
| 61 | #else |
---|
| 62 | static double aT[] = { |
---|
| 63 | #endif |
---|
| 64 | 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
---|
| 65 | -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
---|
| 66 | 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
---|
| 67 | -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
---|
| 68 | 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
---|
| 69 | -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
---|
| 70 | 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
---|
| 71 | -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
---|
| 72 | 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
---|
| 73 | -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
---|
| 74 | 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
---|
| 75 | }; |
---|
| 76 | |
---|
| 77 | #ifdef __STDC__ |
---|
| 78 | static const double |
---|
| 79 | #else |
---|
| 80 | static double |
---|
| 81 | #endif |
---|
| 82 | one = 1.0, |
---|
| 83 | huge = 1.0e300; |
---|
| 84 | |
---|
| 85 | #ifdef __STDC__ |
---|
| 86 | double atan(double x) |
---|
| 87 | #else |
---|
| 88 | double atan(x) |
---|
| 89 | double x; |
---|
| 90 | #endif |
---|
| 91 | { |
---|
| 92 | double w,s1,s2,z; |
---|
| 93 | int n0,ix,hx,id; |
---|
| 94 | |
---|
| 95 | n0 = ((*(int*)&one)>>29)^1; |
---|
| 96 | hx = *(n0+(int*)&x); |
---|
| 97 | ix = hx&0x7fffffff; |
---|
| 98 | if(ix>=0x44100000) { /* if |x| >= 2^66 */ |
---|
| 99 | if(ix>0x7ff00000|| |
---|
| 100 | (ix==0x7ff00000&&(*(1-n0+(int*)&x)!=0))) |
---|
| 101 | return x+x; /* NaN */ |
---|
| 102 | if(hx>0) return atanhi[3]+atanlo[3]; |
---|
| 103 | else return -atanhi[3]-atanlo[3]; |
---|
| 104 | } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ |
---|
| 105 | if (ix < 0x3e200000) { /* |x| < 2^-29 */ |
---|
| 106 | if(huge+x>one) return x; /* raise inexact */ |
---|
| 107 | } |
---|
| 108 | id = -1; |
---|
| 109 | } else { |
---|
| 110 | x = fabs(x); |
---|
| 111 | if (ix < 0x3ff30000) { /* |x| < 1.1875 */ |
---|
| 112 | if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ |
---|
| 113 | id = 0; x = (2.0*x-one)/(2.0+x); |
---|
| 114 | } else { /* 11/16<=|x|< 19/16 */ |
---|
| 115 | id = 1; x = (x-one)/(x+one); |
---|
| 116 | } |
---|
| 117 | } else { |
---|
| 118 | if (ix < 0x40038000) { /* |x| < 2.4375 */ |
---|
| 119 | id = 2; x = (x-1.5)/(one+1.5*x); |
---|
| 120 | } else { /* 2.4375 <= |x| < 2^66 */ |
---|
| 121 | id = 3; x = -1.0/x; |
---|
| 122 | } |
---|
| 123 | }} |
---|
| 124 | /* end of argument reduction */ |
---|
| 125 | z = x*x; |
---|
| 126 | w = z*z; |
---|
| 127 | /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
---|
| 128 | s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); |
---|
| 129 | s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); |
---|
| 130 | if (id<0) return x - x*(s1+s2); |
---|
| 131 | else { |
---|
| 132 | z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); |
---|
| 133 | return (hx<0)? -z:z; |
---|
| 134 | } |
---|
| 135 | } |
---|