1 | |
---|
2 | /* @(#)s_expm1.c 5.1 93/09/24 */ |
---|
3 | /* |
---|
4 | * ==================================================== |
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
6 | * |
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
8 | * Permission to use, copy, modify, and distribute this |
---|
9 | * software is freely granted, provided that this notice |
---|
10 | * is preserved. |
---|
11 | * ==================================================== |
---|
12 | */ |
---|
13 | |
---|
14 | /* expm1(x) |
---|
15 | * Returns exp(x)-1, the exponential of x minus 1. |
---|
16 | * |
---|
17 | * Method |
---|
18 | * 1. Argument reduction: |
---|
19 | * Given x, find r and integer k such that |
---|
20 | * |
---|
21 | * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
---|
22 | * |
---|
23 | * Here a correction term c will be computed to compensate |
---|
24 | * the error in r when rounded to a floating-point number. |
---|
25 | * |
---|
26 | * 2. Approximating expm1(r) by a special rational function on |
---|
27 | * the interval [0,0.34658]: |
---|
28 | * Since |
---|
29 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
---|
30 | * we define R1(r*r) by |
---|
31 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
---|
32 | * That is, |
---|
33 | * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
---|
34 | * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
---|
35 | * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
---|
36 | * We use a special Reme algorithm on [0,0.347] to generate |
---|
37 | * a polynomial of degree 5 in r*r to approximate R1. The |
---|
38 | * maximum error of this polynomial approximation is bounded |
---|
39 | * by 2**-61. In other words, |
---|
40 | * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
---|
41 | * where Q1 = -1.6666666666666567384E-2, |
---|
42 | * Q2 = 3.9682539681370365873E-4, |
---|
43 | * Q3 = -9.9206344733435987357E-6, |
---|
44 | * Q4 = 2.5051361420808517002E-7, |
---|
45 | * Q5 = -6.2843505682382617102E-9; |
---|
46 | * (where z=r*r, and the values of Q1 to Q5 are listed below) |
---|
47 | * with error bounded by |
---|
48 | * | 5 | -61 |
---|
49 | * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
---|
50 | * | | |
---|
51 | * |
---|
52 | * expm1(r) = exp(r)-1 is then computed by the following |
---|
53 | * specific way which minimize the accumulation rounding error: |
---|
54 | * 2 3 |
---|
55 | * r r [ 3 - (R1 + R1*r/2) ] |
---|
56 | * expm1(r) = r + --- + --- * [--------------------] |
---|
57 | * 2 2 [ 6 - r*(3 - R1*r/2) ] |
---|
58 | * |
---|
59 | * To compensate the error in the argument reduction, we use |
---|
60 | * expm1(r+c) = expm1(r) + c + expm1(r)*c |
---|
61 | * ~ expm1(r) + c + r*c |
---|
62 | * Thus c+r*c will be added in as the correction terms for |
---|
63 | * expm1(r+c). Now rearrange the term to avoid optimization |
---|
64 | * screw up: |
---|
65 | * ( 2 2 ) |
---|
66 | * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
---|
67 | * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
---|
68 | * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
---|
69 | * ( ) |
---|
70 | * |
---|
71 | * = r - E |
---|
72 | * 3. Scale back to obtain expm1(x): |
---|
73 | * From step 1, we have |
---|
74 | * expm1(x) = either 2^k*[expm1(r)+1] - 1 |
---|
75 | * = or 2^k*[expm1(r) + (1-2^-k)] |
---|
76 | * 4. Implementation notes: |
---|
77 | * (A). To save one multiplication, we scale the coefficient Qi |
---|
78 | * to Qi*2^i, and replace z by (x^2)/2. |
---|
79 | * (B). To achieve maximum accuracy, we compute expm1(x) by |
---|
80 | * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
---|
81 | * (ii) if k=0, return r-E |
---|
82 | * (iii) if k=-1, return 0.5*(r-E)-0.5 |
---|
83 | * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
---|
84 | * else return 1.0+2.0*(r-E); |
---|
85 | * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
---|
86 | * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
---|
87 | * (vii) return 2^k(1-((E+2^-k)-r)) |
---|
88 | * |
---|
89 | * Special cases: |
---|
90 | * expm1(INF) is INF, expm1(NaN) is NaN; |
---|
91 | * expm1(-INF) is -1, and |
---|
92 | * for finite argument, only expm1(0)=0 is exact. |
---|
93 | * |
---|
94 | * Accuracy: |
---|
95 | * according to an error analysis, the error is always less than |
---|
96 | * 1 ulp (unit in the last place). |
---|
97 | * |
---|
98 | * Misc. info. |
---|
99 | * For IEEE double |
---|
100 | * if x > 7.09782712893383973096e+02 then expm1(x) overflow |
---|
101 | * |
---|
102 | * Constants: |
---|
103 | * The hexadecimal values are the intended ones for the following |
---|
104 | * constants. The decimal values may be used, provided that the |
---|
105 | * compiler will convert from decimal to binary accurately enough |
---|
106 | * to produce the hexadecimal values shown. |
---|
107 | */ |
---|
108 | |
---|
109 | #include <libm/fdlibm.h> |
---|
110 | |
---|
111 | #ifdef __STDC__ |
---|
112 | static const double |
---|
113 | #else |
---|
114 | static double |
---|
115 | #endif |
---|
116 | one = 1.0, |
---|
117 | huge = 1.0e+300, |
---|
118 | tiny = 1.0e-300, |
---|
119 | o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ |
---|
120 | ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ |
---|
121 | ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ |
---|
122 | invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ |
---|
123 | /* scaled coefficients related to expm1 */ |
---|
124 | Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
---|
125 | Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
---|
126 | Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
---|
127 | Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
---|
128 | Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
---|
129 | |
---|
130 | #ifdef __STDC__ |
---|
131 | double expm1(double x) |
---|
132 | #else |
---|
133 | double expm1(x) |
---|
134 | double x; |
---|
135 | #endif |
---|
136 | { |
---|
137 | double y,hi,lo,c=0,t,e,hxs,hfx,r1; |
---|
138 | int k,xsb,n0; |
---|
139 | unsigned hx; |
---|
140 | |
---|
141 | n0 = ((*(int*)&one)>>29)^1; /* high word index */ |
---|
142 | hx = *(n0+(unsigned*)&x); /* high word of x */ |
---|
143 | xsb = hx&0x80000000; /* sign bit of x */ |
---|
144 | if(xsb==0) y=x; else y= -x; /* y = |x| */ |
---|
145 | hx &= 0x7fffffff; /* high word of |x| */ |
---|
146 | |
---|
147 | /* filter out huge and non-finite argument */ |
---|
148 | if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
---|
149 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
---|
150 | if(hx>=0x7ff00000) { |
---|
151 | if(((hx&0xfffff)|*(1-n0+(int*)&x))!=0) |
---|
152 | return x+x; /* NaN */ |
---|
153 | else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ |
---|
154 | } |
---|
155 | if(x > o_threshold) return huge*huge; /* overflow */ |
---|
156 | } |
---|
157 | if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ |
---|
158 | if(x+tiny<0.0) /* raise inexact */ |
---|
159 | return tiny-one; /* return -1 */ |
---|
160 | } |
---|
161 | } |
---|
162 | |
---|
163 | /* argument reduction */ |
---|
164 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
---|
165 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
---|
166 | if(xsb==0) |
---|
167 | {hi = x - ln2_hi; lo = ln2_lo; k = 1;} |
---|
168 | else |
---|
169 | {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} |
---|
170 | } else { |
---|
171 | k = invln2*x+((xsb==0)?0.5:-0.5); |
---|
172 | t = k; |
---|
173 | hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ |
---|
174 | lo = t*ln2_lo; |
---|
175 | } |
---|
176 | x = hi - lo; |
---|
177 | c = (hi-x)-lo; |
---|
178 | } |
---|
179 | else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
---|
180 | t = huge+x; /* return x with inexact flags when x!=0 */ |
---|
181 | return x - (t-(huge+x)); |
---|
182 | } |
---|
183 | else k = 0; |
---|
184 | |
---|
185 | /* x is now in primary range */ |
---|
186 | hfx = 0.5*x; |
---|
187 | hxs = x*hfx; |
---|
188 | r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); |
---|
189 | t = 3.0-r1*hfx; |
---|
190 | e = hxs*((r1-t)/(6.0 - x*t)); |
---|
191 | if(k==0) return x - (x*e-hxs); /* c is 0 */ |
---|
192 | else { |
---|
193 | e = (x*(e-c)-c); |
---|
194 | e -= hxs; |
---|
195 | if(k== -1) return 0.5*(x-e)-0.5; |
---|
196 | if(k==1) |
---|
197 | { |
---|
198 | if(x < -0.25) |
---|
199 | return -2.0*(e-(x+0.5)); |
---|
200 | else |
---|
201 | return one+2.0*(x-e); |
---|
202 | } |
---|
203 | if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ |
---|
204 | y = one-(e-x); |
---|
205 | *(n0+(int*)&y) += (k<<20); /* add k to y's exponent */ |
---|
206 | return y-one; |
---|
207 | } |
---|
208 | t = one; |
---|
209 | if(k<20) { |
---|
210 | *(n0+(int*)&t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */ |
---|
211 | y = t-(e-x); |
---|
212 | *(n0+(int*)&y) += (k<<20); /* add k to y's exponent */ |
---|
213 | } else { |
---|
214 | *(n0+(int*)&t) = ((0x3ff-k)<<20); /* 2^-k */ |
---|
215 | y = x-(e+t); |
---|
216 | y += one; |
---|
217 | *(n0+(int*)&y) += (k<<20); /* add k to y's exponent */ |
---|
218 | } |
---|
219 | } |
---|
220 | return y; |
---|
221 | } |
---|