1 | |
---|
2 | /* @(#)s_log1p.c 5.1 93/09/24 */ |
---|
3 | /* |
---|
4 | * ==================================================== |
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
6 | * |
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
8 | * Permission to use, copy, modify, and distribute this |
---|
9 | * software is freely granted, provided that this notice |
---|
10 | * is preserved. |
---|
11 | * ==================================================== |
---|
12 | */ |
---|
13 | |
---|
14 | /* double log1p(double x) |
---|
15 | * |
---|
16 | * Method : |
---|
17 | * 1. Argument Reduction: find k and f such that |
---|
18 | * 1+x = 2^k * (1+f), |
---|
19 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
---|
20 | * |
---|
21 | * Note. If k=0, then f=x is exact. However, if k!=0, then f |
---|
22 | * may not be representable exactly. In that case, a correction |
---|
23 | * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
---|
24 | * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
---|
25 | * and add back the correction term c/u. |
---|
26 | * (Note: when x > 2**53, one can simply return log(x)) |
---|
27 | * |
---|
28 | * 2. Approximation of log1p(f). |
---|
29 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
---|
30 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
---|
31 | * = 2s + s*R |
---|
32 | * We use a special Reme algorithm on [0,0.1716] to generate |
---|
33 | * a polynomial of degree 14 to approximate R The maximum error |
---|
34 | * of this polynomial approximation is bounded by 2**-58.45. In |
---|
35 | * other words, |
---|
36 | * 2 4 6 8 10 12 14 |
---|
37 | * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s |
---|
38 | * (the values of Lp1 to Lp7 are listed in the program) |
---|
39 | * and |
---|
40 | * | 2 14 | -58.45 |
---|
41 | * | Lp1*s +...+Lp7*s - R(z) | <= 2 |
---|
42 | * | | |
---|
43 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
---|
44 | * In order to guarantee error in log below 1ulp, we compute log |
---|
45 | * by |
---|
46 | * log1p(f) = f - (hfsq - s*(hfsq+R)). |
---|
47 | * |
---|
48 | * 3. Finally, log1p(x) = k*ln2 + log1p(f). |
---|
49 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
---|
50 | * Here ln2 is split into two floating point number: |
---|
51 | * ln2_hi + ln2_lo, |
---|
52 | * where n*ln2_hi is always exact for |n| < 2000. |
---|
53 | * |
---|
54 | * Special cases: |
---|
55 | * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
---|
56 | * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
---|
57 | * log1p(NaN) is that NaN with no signal. |
---|
58 | * |
---|
59 | * Accuracy: |
---|
60 | * according to an error analysis, the error is always less than |
---|
61 | * 1 ulp (unit in the last place). |
---|
62 | * |
---|
63 | * Constants: |
---|
64 | * The hexadecimal values are the intended ones for the following |
---|
65 | * constants. The decimal values may be used, provided that the |
---|
66 | * compiler will convert from decimal to binary accurately enough |
---|
67 | * to produce the hexadecimal values shown. |
---|
68 | * |
---|
69 | * Note: Assuming log() return accurate answer, the following |
---|
70 | * algorithm can be used to compute log1p(x) to within a few ULP: |
---|
71 | * |
---|
72 | * u = 1+x; |
---|
73 | * if(u==1.0) return x ; else |
---|
74 | * return log(u)*(x/(u-1.0)); |
---|
75 | * |
---|
76 | * See HP-15C Advanced Functions Handbook, p.193. |
---|
77 | */ |
---|
78 | |
---|
79 | #include <libm/fdlibm.h> |
---|
80 | |
---|
81 | #ifdef __STDC__ |
---|
82 | static const double |
---|
83 | #else |
---|
84 | static double |
---|
85 | #endif |
---|
86 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
---|
87 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
---|
88 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
---|
89 | Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
---|
90 | Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
---|
91 | Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
---|
92 | Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
---|
93 | Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
---|
94 | Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
---|
95 | Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
---|
96 | |
---|
97 | static double zero = 0.0; |
---|
98 | |
---|
99 | #ifdef __STDC__ |
---|
100 | double log1p(double x) |
---|
101 | #else |
---|
102 | double log1p(x) |
---|
103 | double x; |
---|
104 | #endif |
---|
105 | { |
---|
106 | double hfsq,f,c = 0,s,z,R,u; |
---|
107 | int k,hx,n0,hu,ax; |
---|
108 | |
---|
109 | n0 = (*((int*)&two54)>>30)^1; /* high word index */ |
---|
110 | hx = *(n0+(int*)&x); /* high word of x */ |
---|
111 | ax = hx&0x7fffffff; |
---|
112 | |
---|
113 | k = 1; |
---|
114 | if (hx < 0x3FDA827A) { /* x < 0.41422 */ |
---|
115 | if(ax>=0x3ff00000) { /* x <= -1.0 */ |
---|
116 | if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */ |
---|
117 | else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ |
---|
118 | } |
---|
119 | if(ax<0x3e200000) { /* |x| < 2**-29 */ |
---|
120 | if(two54+x>zero /* raise inexact */ |
---|
121 | &&ax<0x3c900000) /* |x| < 2**-54 */ |
---|
122 | return x; |
---|
123 | else |
---|
124 | return x - x*x*0.5; |
---|
125 | } |
---|
126 | if(hx>0||hx<=((int)0xbfd2bec3)) { |
---|
127 | k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */ |
---|
128 | } |
---|
129 | if (hx >= 0x7ff00000) return x+x; |
---|
130 | if(k!=0) { |
---|
131 | if(hx<0x43400000) { |
---|
132 | u = 1.0+x; |
---|
133 | hu = *(n0+(int*)&u); /* high word of u */ |
---|
134 | k = (hu>>20)-1023; |
---|
135 | c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ |
---|
136 | c /= u; |
---|
137 | } else { |
---|
138 | u = x; |
---|
139 | hu = *(n0+(int*)&u); /* high word of u */ |
---|
140 | k = (hu>>20)-1023; |
---|
141 | c = 0; |
---|
142 | } |
---|
143 | hu &= 0x000fffff; |
---|
144 | if(hu<0x6a09e) { |
---|
145 | *(n0+(int*)&u) = hu|0x3ff00000; /* normalize u */ |
---|
146 | } else { |
---|
147 | k += 1; |
---|
148 | *(n0+(int*)&u) = hu|0x3fe00000; /* normalize u/2 */ |
---|
149 | hu = (0x00100000-hu)>>2; |
---|
150 | } |
---|
151 | f = u-1.0; |
---|
152 | } |
---|
153 | hfsq=0.5*f*f; |
---|
154 | if(hu==0) { /* |f| < 2**-20 */ |
---|
155 | if(f==zero) |
---|
156 | { |
---|
157 | if(k==0) |
---|
158 | return zero; |
---|
159 | else |
---|
160 | { |
---|
161 | c += k*ln2_lo; |
---|
162 | return k*ln2_hi+c; |
---|
163 | } |
---|
164 | } |
---|
165 | R = hfsq*(1.0-0.66666666666666666*f); |
---|
166 | if(k==0) return f-R; else |
---|
167 | return k*ln2_hi-((R-(k*ln2_lo+c))-f); |
---|
168 | } |
---|
169 | s = f/(2.0+f); |
---|
170 | z = s*s; |
---|
171 | R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); |
---|
172 | if(k==0) return f-(hfsq-s*(hfsq+R)); else |
---|
173 | return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); |
---|
174 | } |
---|