1 | |
---|
2 | /* @(#)s_rint.c 5.1 93/09/24 */ |
---|
3 | /* |
---|
4 | * ==================================================== |
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
---|
6 | * |
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
---|
8 | * Permission to use, copy, modify, and distribute this |
---|
9 | * software is freely granted, provided that this notice |
---|
10 | * is preserved. |
---|
11 | * ==================================================== |
---|
12 | */ |
---|
13 | |
---|
14 | /* |
---|
15 | * rint(x) |
---|
16 | * Return x rounded to integral value according to the prevailing |
---|
17 | * rounding mode. |
---|
18 | * Method: |
---|
19 | * Using floating addition. |
---|
20 | * Exception: |
---|
21 | * Inexact flag raised if x not equal to rint(x). |
---|
22 | */ |
---|
23 | |
---|
24 | #include <libm/fdlibm.h> |
---|
25 | |
---|
26 | #ifdef __STDC__ |
---|
27 | static const double |
---|
28 | #else |
---|
29 | static double |
---|
30 | #endif |
---|
31 | one = 1.0, |
---|
32 | TWO52[2]={ |
---|
33 | 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ |
---|
34 | -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */ |
---|
35 | }; |
---|
36 | |
---|
37 | #ifdef __STDC__ |
---|
38 | double rint(double x) |
---|
39 | #else |
---|
40 | double rint(x) |
---|
41 | double x; |
---|
42 | #endif |
---|
43 | { |
---|
44 | int i0,n0,j0,sx; |
---|
45 | unsigned i,i1; |
---|
46 | double w,t; |
---|
47 | n0 = (*((int *)&one)>>29)^1; |
---|
48 | i0 = *(n0+(int*)&x); |
---|
49 | sx = (i0>>31)&1; |
---|
50 | i1 = *(1-n0+(int*)&x); |
---|
51 | j0 = ((i0>>20)&0x7ff)-0x3ff; |
---|
52 | if(j0<20) { |
---|
53 | if(j0<0) { |
---|
54 | if(((i0&0x7fffffff)|i1)==0) return x; |
---|
55 | i1 |= (i0&0x0fffff); |
---|
56 | i0 &= 0xfffe0000; |
---|
57 | i0 |= ((i1|-i1)>>12)&0x80000; |
---|
58 | *(n0+(int*)&x)=i0; |
---|
59 | w = TWO52[sx]+x; |
---|
60 | t = w-TWO52[sx]; |
---|
61 | i0 = *(n0+(int*)&t); |
---|
62 | *(n0+(int*)&t) = (i0&0x7fffffff)|(sx<<31); |
---|
63 | return t; |
---|
64 | } else { |
---|
65 | i = (0x000fffff)>>j0; |
---|
66 | if(((i0&i)|i1)==0) return x; /* x is integral */ |
---|
67 | i>>=1; |
---|
68 | if(((i0&i)|i1)!=0) { |
---|
69 | if(j0==19) i1 = 0x40000000; else |
---|
70 | i0 = (i0&(~i))|((0x20000)>>j0); |
---|
71 | } |
---|
72 | } |
---|
73 | } else if (j0>51) { |
---|
74 | if(j0==0x400) return x+x; /* inf or NaN */ |
---|
75 | else return x; /* x is integral */ |
---|
76 | } else { |
---|
77 | i = ((unsigned)(0xffffffff))>>(j0-20); |
---|
78 | if((i1&i)==0) return x; /* x is integral */ |
---|
79 | i>>=1; |
---|
80 | if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20)); |
---|
81 | } |
---|
82 | *(n0+(int*)&x) = i0; |
---|
83 | *(1-n0+(int*)&x) = i1; |
---|
84 | w = TWO52[sx]+x; |
---|
85 | return w-TWO52[sx]; |
---|
86 | } |
---|