[1] | 1 | #if defined(USE_POW) |
---|
| 2 | #define r23 pow(0.5, 23.0) |
---|
| 3 | #define r46 (r23*r23) |
---|
| 4 | #define t23 pow(2.0, 23.0) |
---|
| 5 | #define t46 (t23*t23) |
---|
| 6 | #else |
---|
| 7 | #define r23 (0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5) |
---|
| 8 | #define r46 (r23*r23) |
---|
| 9 | #define t23 (2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0*2.0) |
---|
| 10 | #define t46 (t23*t23) |
---|
| 11 | #endif |
---|
| 12 | |
---|
| 13 | double randlc (double *x, double a) { |
---|
| 14 | |
---|
| 15 | /* This routine returns a uniform pseudorandom double precision number in the |
---|
| 16 | range (0, 1) by using the linear congruential generator |
---|
| 17 | |
---|
| 18 | x_{k+1} = a x_k (mod 2^46) |
---|
| 19 | |
---|
| 20 | where 0 < x_k < 2^46 and 0 < a < 2^46. This scheme generates 2^44 numbers |
---|
| 21 | before repeating. The argument A is the same as 'a' in the above formula, |
---|
| 22 | and X is the same as x_0. A and X must be odd double precision integers |
---|
| 23 | in the range (1, 2^46). The returned value RANDLC is normalized to be |
---|
| 24 | between 0 and 1, i.e. RANDLC = 2^(-46) * x_1. X is updated to contain |
---|
| 25 | the new seed x_1, so that subsequent calls to RANDLC using the same |
---|
| 26 | arguments will generate a continuous sequence. |
---|
| 27 | |
---|
| 28 | This routine should produce the same results on any computer with at least |
---|
| 29 | 48 mantissa bits in double precision floating point data. On 64 bit |
---|
| 30 | systems, double precision should be disabled. |
---|
| 31 | |
---|
| 32 | David H. Bailey October 26, 1990 |
---|
| 33 | */ |
---|
| 34 | double t1,t2,t3,t4,a1,a2,x1,x2,z; |
---|
| 35 | |
---|
| 36 | /* Break A into two parts such that A = 2^23 * A1 + A2. */ |
---|
| 37 | t1 = r23 * a; |
---|
| 38 | a1 = (int)t1; |
---|
| 39 | a2 = a - t23 * a1; |
---|
| 40 | |
---|
| 41 | /* Break X into two parts such that X = 2^23 * X1 + X2, compute |
---|
| 42 | Z = A1 * X2 + A2 * X1 (mod 2^23), and then |
---|
| 43 | X = 2^23 * Z + A2 * X2 (mod 2^46). */ |
---|
| 44 | t1 = r23 * (*x); |
---|
| 45 | x1 = (int)t1; |
---|
| 46 | x2 = (*x) - t23 * x1; |
---|
| 47 | t1 = a1 * x2 + a2 * x1; |
---|
| 48 | t2 = (int)(r23 * t1); |
---|
| 49 | z = t1 - t23 * t2; |
---|
| 50 | t3 = t23 * z + a2 * x2; |
---|
| 51 | t4 = (int)(r46 * t3); |
---|
| 52 | (*x) = t3 - t46 * t4; |
---|
| 53 | |
---|
| 54 | return (r46 * (*x)); |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | void vranlc (int n, double *x_seed, double a, double y[]) { |
---|
| 58 | /* This routine generates N uniform pseudorandom double precision numbers in |
---|
| 59 | the range (0, 1) by using the linear congruential generator |
---|
| 60 | |
---|
| 61 | x_{k+1} = a x_k (mod 2^46) |
---|
| 62 | |
---|
| 63 | where 0 < x_k < 2^46 and 0 < a < 2^46. This scheme generates 2^44 numbers |
---|
| 64 | before repeating. The argument A is the same as 'a' in the above formula, |
---|
| 65 | and X is the same as x_0. A and X must be odd double precision integers |
---|
| 66 | in the range (1, 2^46). The N results are placed in Y and are normalized |
---|
| 67 | to be between 0 and 1. X is updated to contain the new seed, so that |
---|
| 68 | subsequent calls to VRANLC using the same arguments will generate a |
---|
| 69 | continuous sequence. If N is zero, only initialization is performed, and |
---|
| 70 | the variables X, A and Y are ignored. |
---|
| 71 | |
---|
| 72 | This routine is the standard version designed for scalar or RISC systems. |
---|
| 73 | However, it should produce the same results on any single processor |
---|
| 74 | computer with at least 48 mantissa bits in double precision floating point |
---|
| 75 | data. On 64 bit systems, double precision should be disabled. */ |
---|
| 76 | |
---|
| 77 | int i; |
---|
| 78 | double x,t1,t2,t3,t4,a1,a2,x1,x2,z; |
---|
| 79 | |
---|
| 80 | /* Break A into two parts such that A = 2^23 * A1 + A2. */ |
---|
| 81 | t1 = r23 * a; |
---|
| 82 | a1 = (int)t1; |
---|
| 83 | a2 = a - t23 * a1; |
---|
| 84 | x = *x_seed; |
---|
| 85 | |
---|
| 86 | /* Generate N results. This loop is not vectorizable. */ |
---|
| 87 | for (i = 1; i <= n; i++) { |
---|
| 88 | |
---|
| 89 | /* Break X into two parts such that X = 2^23 * X1 + X2, compute |
---|
| 90 | Z = A1 * X2 + A2 * X1 (mod 2^23), and then |
---|
| 91 | X = 2^23 * Z + A2 * X2 (mod 2^46). */ |
---|
| 92 | t1 = r23 * x; |
---|
| 93 | x1 = (int)t1; |
---|
| 94 | x2 = x - t23 * x1; |
---|
| 95 | t1 = a1 * x2 + a2 * x1; |
---|
| 96 | t2 = (int)(r23 * t1); |
---|
| 97 | z = t1 - t23 * t2; |
---|
| 98 | t3 = t23 * z + a2 * x2; |
---|
| 99 | t4 = (int)(r46 * t3); |
---|
| 100 | x = t3 - t46 * t4; |
---|
| 101 | y[i] = r46 * x; |
---|
| 102 | } |
---|
| 103 | *x_seed = x; |
---|
| 104 | } |
---|