[1] | 1 | /* RAND functions using 64b INTEGERs |
---|
| 2 | |
---|
| 3 | F. CANTONNET - HPCL - GWU */ |
---|
| 4 | |
---|
| 5 | double randlc (double *x, double a) |
---|
| 6 | { |
---|
| 7 | /* This routine returns a uniform pseudorandom double precision number in the |
---|
| 8 | range (0, 1) by using the linear congruential generator |
---|
| 9 | |
---|
| 10 | x_{k+1} = a x_k (mod 2^46) |
---|
| 11 | |
---|
| 12 | where 0 < x_k < 2^46 and 0 < a < 2^46. This scheme generates 2^44 numbers |
---|
| 13 | before repeating. The argument A is the same as 'a' in the above formula, |
---|
| 14 | and X is the same as x_0. A and X must be odd double precision integers |
---|
| 15 | in the range (1, 2^46). The returned value RANDLC is normalized to be |
---|
| 16 | between 0 and 1, i.e. RANDLC = 2^(-46) * x_1. X is updated to contain |
---|
| 17 | the new seed x_1, so that subsequent calls to RANDLC using the same |
---|
| 18 | arguments will generate a continuous sequence. |
---|
| 19 | |
---|
| 20 | This routine should produce the same results on any computer with at least |
---|
| 21 | 48 mantissa bits in double precision floating point data. On 64 bit |
---|
| 22 | systems, double precision should be disabled. |
---|
| 23 | |
---|
| 24 | David H. Bailey October 26, 1990 */ |
---|
| 25 | |
---|
| 26 | unsigned long long i246m1, Lx, La; |
---|
| 27 | double d2m46; |
---|
| 28 | |
---|
| 29 | d2m46 = 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 30 | 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 31 | 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 32 | 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 33 | 0.5*0.5*0.5*0.5*0.5*0.5; |
---|
| 34 | //d2m46 = pow( 0.5, 46 ); |
---|
| 35 | |
---|
| 36 | i246m1 = 0x00003FFFFFFFFFFFLL; |
---|
| 37 | |
---|
| 38 | Lx = *x; |
---|
| 39 | La = a; |
---|
| 40 | |
---|
| 41 | Lx = (Lx*La)&i246m1; |
---|
| 42 | *x = (double) Lx; |
---|
| 43 | return (d2m46 * (*x)); |
---|
| 44 | } |
---|
| 45 | |
---|
| 46 | void vranlc (int n, double *x_seed, double a, double y[]) { |
---|
| 47 | /* This routine generates N uniform pseudorandom double precision numbers in |
---|
| 48 | the range (0, 1) by using the linear congruential generator |
---|
| 49 | |
---|
| 50 | x_{k+1} = a x_k (mod 2^46) |
---|
| 51 | |
---|
| 52 | where 0 < x_k < 2^46 and 0 < a < 2^46. This scheme generates 2^44 numbers |
---|
| 53 | before repeating. The argument A is the same as 'a' in the above formula, |
---|
| 54 | and X is the same as x_0. A and X must be odd double precision integers |
---|
| 55 | in the range (1, 2^46). The N results are placed in Y and are normalized |
---|
| 56 | to be between 0 and 1. X is updated to contain the new seed, so that |
---|
| 57 | subsequent calls to VRANLC using the same arguments will generate a |
---|
| 58 | continuous sequence. If N is zero, only initialization is performed, and |
---|
| 59 | the variables X, A and Y are ignored. |
---|
| 60 | |
---|
| 61 | This routine is the standard version designed for scalar or RISC systems. |
---|
| 62 | However, it should produce the same results on any single processor |
---|
| 63 | computer with at least 48 mantissa bits in double precision floating point |
---|
| 64 | data. On 64 bit systems, double precision should be disabled. |
---|
| 65 | */ |
---|
| 66 | int i; |
---|
| 67 | double x; |
---|
| 68 | unsigned long long i246m1, Lx, La; |
---|
| 69 | double d2m46; |
---|
| 70 | |
---|
| 71 | d2m46 = 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 72 | 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 73 | 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 74 | 0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5*0.5* |
---|
| 75 | 0.5*0.5*0.5*0.5*0.5*0.5; |
---|
| 76 | // d2m46 = pow( 0.5, 46.0 ); |
---|
| 77 | i246m1 = 0x00003FFFFFFFFFFFLL; |
---|
| 78 | |
---|
| 79 | x = *x_seed; |
---|
| 80 | Lx = x; |
---|
| 81 | La = a; |
---|
| 82 | |
---|
| 83 | for (i = 1; i <= n; i++) |
---|
| 84 | { |
---|
| 85 | Lx = ((Lx*La)&i246m1); |
---|
| 86 | x = (double) Lx; |
---|
| 87 | y[i] = d2m46 * x; |
---|
| 88 | } |
---|
| 89 | *x_seed = x; |
---|
| 90 | } |
---|