[1] | 1 | /* adler32.c -- compute the Adler-32 checksum of a data stream |
---|
| 2 | * Copyright (C) 1995-2004 Mark Adler |
---|
| 3 | * For conditions of distribution and use, see copyright notice in zlib.h |
---|
| 4 | */ |
---|
| 5 | |
---|
| 6 | /* @(#) $Id$ */ |
---|
| 7 | |
---|
| 8 | #define ZLIB_INTERNAL |
---|
| 9 | #include "zlib.h" |
---|
| 10 | |
---|
| 11 | #define BASE 65521UL /* largest prime smaller than 65536 */ |
---|
| 12 | #define NMAX 5552 |
---|
| 13 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
---|
| 14 | |
---|
| 15 | #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
---|
| 16 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
---|
| 17 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
---|
| 18 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
---|
| 19 | #define DO16(buf) DO8(buf,0); DO8(buf,8); |
---|
| 20 | |
---|
| 21 | /* use NO_DIVIDE if your processor does not do division in hardware */ |
---|
| 22 | #ifdef NO_DIVIDE |
---|
| 23 | # define MOD(a) \ |
---|
| 24 | do { \ |
---|
| 25 | if (a >= (BASE << 16)) a -= (BASE << 16); \ |
---|
| 26 | if (a >= (BASE << 15)) a -= (BASE << 15); \ |
---|
| 27 | if (a >= (BASE << 14)) a -= (BASE << 14); \ |
---|
| 28 | if (a >= (BASE << 13)) a -= (BASE << 13); \ |
---|
| 29 | if (a >= (BASE << 12)) a -= (BASE << 12); \ |
---|
| 30 | if (a >= (BASE << 11)) a -= (BASE << 11); \ |
---|
| 31 | if (a >= (BASE << 10)) a -= (BASE << 10); \ |
---|
| 32 | if (a >= (BASE << 9)) a -= (BASE << 9); \ |
---|
| 33 | if (a >= (BASE << 8)) a -= (BASE << 8); \ |
---|
| 34 | if (a >= (BASE << 7)) a -= (BASE << 7); \ |
---|
| 35 | if (a >= (BASE << 6)) a -= (BASE << 6); \ |
---|
| 36 | if (a >= (BASE << 5)) a -= (BASE << 5); \ |
---|
| 37 | if (a >= (BASE << 4)) a -= (BASE << 4); \ |
---|
| 38 | if (a >= (BASE << 3)) a -= (BASE << 3); \ |
---|
| 39 | if (a >= (BASE << 2)) a -= (BASE << 2); \ |
---|
| 40 | if (a >= (BASE << 1)) a -= (BASE << 1); \ |
---|
| 41 | if (a >= BASE) a -= BASE; \ |
---|
| 42 | } while (0) |
---|
| 43 | # define MOD4(a) \ |
---|
| 44 | do { \ |
---|
| 45 | if (a >= (BASE << 4)) a -= (BASE << 4); \ |
---|
| 46 | if (a >= (BASE << 3)) a -= (BASE << 3); \ |
---|
| 47 | if (a >= (BASE << 2)) a -= (BASE << 2); \ |
---|
| 48 | if (a >= (BASE << 1)) a -= (BASE << 1); \ |
---|
| 49 | if (a >= BASE) a -= BASE; \ |
---|
| 50 | } while (0) |
---|
| 51 | #else |
---|
| 52 | # define MOD(a) a %= BASE |
---|
| 53 | # define MOD4(a) a %= BASE |
---|
| 54 | #endif |
---|
| 55 | |
---|
| 56 | /* ========================================================================= */ |
---|
| 57 | uLong ZEXPORT adler32(adler, buf, len) |
---|
| 58 | uLong adler; |
---|
| 59 | const Bytef *buf; |
---|
| 60 | uInt len; |
---|
| 61 | { |
---|
| 62 | unsigned long sum2; |
---|
| 63 | unsigned n; |
---|
| 64 | |
---|
| 65 | /* split Adler-32 into component sums */ |
---|
| 66 | sum2 = (adler >> 16) & 0xffff; |
---|
| 67 | adler &= 0xffff; |
---|
| 68 | |
---|
| 69 | /* in case user likes doing a byte at a time, keep it fast */ |
---|
| 70 | if (len == 1) { |
---|
| 71 | adler += buf[0]; |
---|
| 72 | if (adler >= BASE) |
---|
| 73 | adler -= BASE; |
---|
| 74 | sum2 += adler; |
---|
| 75 | if (sum2 >= BASE) |
---|
| 76 | sum2 -= BASE; |
---|
| 77 | return adler | (sum2 << 16); |
---|
| 78 | } |
---|
| 79 | |
---|
| 80 | /* initial Adler-32 value (deferred check for len == 1 speed) */ |
---|
| 81 | if (buf == Z_NULL) |
---|
| 82 | return 1L; |
---|
| 83 | |
---|
| 84 | /* in case short lengths are provided, keep it somewhat fast */ |
---|
| 85 | if (len < 16) { |
---|
| 86 | while (len--) { |
---|
| 87 | adler += *buf++; |
---|
| 88 | sum2 += adler; |
---|
| 89 | } |
---|
| 90 | if (adler >= BASE) |
---|
| 91 | adler -= BASE; |
---|
| 92 | MOD4(sum2); /* only added so many BASE's */ |
---|
| 93 | return adler | (sum2 << 16); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | /* do length NMAX blocks -- requires just one modulo operation */ |
---|
| 97 | while (len >= NMAX) { |
---|
| 98 | len -= NMAX; |
---|
| 99 | n = NMAX / 16; /* NMAX is divisible by 16 */ |
---|
| 100 | do { |
---|
| 101 | DO16(buf); /* 16 sums unrolled */ |
---|
| 102 | buf += 16; |
---|
| 103 | } while (--n); |
---|
| 104 | MOD(adler); |
---|
| 105 | MOD(sum2); |
---|
| 106 | } |
---|
| 107 | |
---|
| 108 | /* do remaining bytes (less than NMAX, still just one modulo) */ |
---|
| 109 | if (len) { /* avoid modulos if none remaining */ |
---|
| 110 | while (len >= 16) { |
---|
| 111 | len -= 16; |
---|
| 112 | DO16(buf); |
---|
| 113 | buf += 16; |
---|
| 114 | } |
---|
| 115 | while (len--) { |
---|
| 116 | adler += *buf++; |
---|
| 117 | sum2 += adler; |
---|
| 118 | } |
---|
| 119 | MOD(adler); |
---|
| 120 | MOD(sum2); |
---|
| 121 | } |
---|
| 122 | |
---|
| 123 | /* return recombined sums */ |
---|
| 124 | return adler | (sum2 << 16); |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | /* ========================================================================= */ |
---|
| 128 | uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
---|
| 129 | uLong adler1; |
---|
| 130 | uLong adler2; |
---|
| 131 | z_off_t len2; |
---|
| 132 | { |
---|
| 133 | unsigned long sum1; |
---|
| 134 | unsigned long sum2; |
---|
| 135 | unsigned rem; |
---|
| 136 | |
---|
| 137 | /* the derivation of this formula is left as an exercise for the reader */ |
---|
| 138 | rem = (unsigned)(len2 % BASE); |
---|
| 139 | sum1 = adler1 & 0xffff; |
---|
| 140 | sum2 = rem * sum1; |
---|
| 141 | MOD(sum2); |
---|
| 142 | sum1 += (adler2 & 0xffff) + BASE - 1; |
---|
| 143 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
---|
| 144 | if (sum1 > BASE) sum1 -= BASE; |
---|
| 145 | if (sum1 > BASE) sum1 -= BASE; |
---|
| 146 | if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); |
---|
| 147 | if (sum2 > BASE) sum2 -= BASE; |
---|
| 148 | return sum1 | (sum2 << 16); |
---|
| 149 | } |
---|