1 | /* adler32.c -- compute the Adler-32 checksum of a data stream |
---|
2 | * Copyright (C) 1995-2004 Mark Adler |
---|
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
---|
4 | */ |
---|
5 | |
---|
6 | /* @(#) $Id$ */ |
---|
7 | |
---|
8 | #define ZLIB_INTERNAL |
---|
9 | #include "zlib.h" |
---|
10 | |
---|
11 | #define BASE 65521UL /* largest prime smaller than 65536 */ |
---|
12 | #define NMAX 5552 |
---|
13 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
---|
14 | |
---|
15 | #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
---|
16 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
---|
17 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
---|
18 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
---|
19 | #define DO16(buf) DO8(buf,0); DO8(buf,8); |
---|
20 | |
---|
21 | /* use NO_DIVIDE if your processor does not do division in hardware */ |
---|
22 | #ifdef NO_DIVIDE |
---|
23 | # define MOD(a) \ |
---|
24 | do { \ |
---|
25 | if (a >= (BASE << 16)) a -= (BASE << 16); \ |
---|
26 | if (a >= (BASE << 15)) a -= (BASE << 15); \ |
---|
27 | if (a >= (BASE << 14)) a -= (BASE << 14); \ |
---|
28 | if (a >= (BASE << 13)) a -= (BASE << 13); \ |
---|
29 | if (a >= (BASE << 12)) a -= (BASE << 12); \ |
---|
30 | if (a >= (BASE << 11)) a -= (BASE << 11); \ |
---|
31 | if (a >= (BASE << 10)) a -= (BASE << 10); \ |
---|
32 | if (a >= (BASE << 9)) a -= (BASE << 9); \ |
---|
33 | if (a >= (BASE << 8)) a -= (BASE << 8); \ |
---|
34 | if (a >= (BASE << 7)) a -= (BASE << 7); \ |
---|
35 | if (a >= (BASE << 6)) a -= (BASE << 6); \ |
---|
36 | if (a >= (BASE << 5)) a -= (BASE << 5); \ |
---|
37 | if (a >= (BASE << 4)) a -= (BASE << 4); \ |
---|
38 | if (a >= (BASE << 3)) a -= (BASE << 3); \ |
---|
39 | if (a >= (BASE << 2)) a -= (BASE << 2); \ |
---|
40 | if (a >= (BASE << 1)) a -= (BASE << 1); \ |
---|
41 | if (a >= BASE) a -= BASE; \ |
---|
42 | } while (0) |
---|
43 | # define MOD4(a) \ |
---|
44 | do { \ |
---|
45 | if (a >= (BASE << 4)) a -= (BASE << 4); \ |
---|
46 | if (a >= (BASE << 3)) a -= (BASE << 3); \ |
---|
47 | if (a >= (BASE << 2)) a -= (BASE << 2); \ |
---|
48 | if (a >= (BASE << 1)) a -= (BASE << 1); \ |
---|
49 | if (a >= BASE) a -= BASE; \ |
---|
50 | } while (0) |
---|
51 | #else |
---|
52 | # define MOD(a) a %= BASE |
---|
53 | # define MOD4(a) a %= BASE |
---|
54 | #endif |
---|
55 | |
---|
56 | /* ========================================================================= */ |
---|
57 | uLong ZEXPORT adler32(adler, buf, len) |
---|
58 | uLong adler; |
---|
59 | const Bytef *buf; |
---|
60 | uInt len; |
---|
61 | { |
---|
62 | unsigned long sum2; |
---|
63 | unsigned n; |
---|
64 | |
---|
65 | /* split Adler-32 into component sums */ |
---|
66 | sum2 = (adler >> 16) & 0xffff; |
---|
67 | adler &= 0xffff; |
---|
68 | |
---|
69 | /* in case user likes doing a byte at a time, keep it fast */ |
---|
70 | if (len == 1) { |
---|
71 | adler += buf[0]; |
---|
72 | if (adler >= BASE) |
---|
73 | adler -= BASE; |
---|
74 | sum2 += adler; |
---|
75 | if (sum2 >= BASE) |
---|
76 | sum2 -= BASE; |
---|
77 | return adler | (sum2 << 16); |
---|
78 | } |
---|
79 | |
---|
80 | /* initial Adler-32 value (deferred check for len == 1 speed) */ |
---|
81 | if (buf == Z_NULL) |
---|
82 | return 1L; |
---|
83 | |
---|
84 | /* in case short lengths are provided, keep it somewhat fast */ |
---|
85 | if (len < 16) { |
---|
86 | while (len--) { |
---|
87 | adler += *buf++; |
---|
88 | sum2 += adler; |
---|
89 | } |
---|
90 | if (adler >= BASE) |
---|
91 | adler -= BASE; |
---|
92 | MOD4(sum2); /* only added so many BASE's */ |
---|
93 | return adler | (sum2 << 16); |
---|
94 | } |
---|
95 | |
---|
96 | /* do length NMAX blocks -- requires just one modulo operation */ |
---|
97 | while (len >= NMAX) { |
---|
98 | len -= NMAX; |
---|
99 | n = NMAX / 16; /* NMAX is divisible by 16 */ |
---|
100 | do { |
---|
101 | DO16(buf); /* 16 sums unrolled */ |
---|
102 | buf += 16; |
---|
103 | } while (--n); |
---|
104 | MOD(adler); |
---|
105 | MOD(sum2); |
---|
106 | } |
---|
107 | |
---|
108 | /* do remaining bytes (less than NMAX, still just one modulo) */ |
---|
109 | if (len) { /* avoid modulos if none remaining */ |
---|
110 | while (len >= 16) { |
---|
111 | len -= 16; |
---|
112 | DO16(buf); |
---|
113 | buf += 16; |
---|
114 | } |
---|
115 | while (len--) { |
---|
116 | adler += *buf++; |
---|
117 | sum2 += adler; |
---|
118 | } |
---|
119 | MOD(adler); |
---|
120 | MOD(sum2); |
---|
121 | } |
---|
122 | |
---|
123 | /* return recombined sums */ |
---|
124 | return adler | (sum2 << 16); |
---|
125 | } |
---|
126 | |
---|
127 | /* ========================================================================= */ |
---|
128 | uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
---|
129 | uLong adler1; |
---|
130 | uLong adler2; |
---|
131 | z_off_t len2; |
---|
132 | { |
---|
133 | unsigned long sum1; |
---|
134 | unsigned long sum2; |
---|
135 | unsigned rem; |
---|
136 | |
---|
137 | /* the derivation of this formula is left as an exercise for the reader */ |
---|
138 | rem = (unsigned)(len2 % BASE); |
---|
139 | sum1 = adler1 & 0xffff; |
---|
140 | sum2 = rem * sum1; |
---|
141 | MOD(sum2); |
---|
142 | sum1 += (adler2 & 0xffff) + BASE - 1; |
---|
143 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
---|
144 | if (sum1 > BASE) sum1 -= BASE; |
---|
145 | if (sum1 > BASE) sum1 -= BASE; |
---|
146 | if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); |
---|
147 | if (sum2 > BASE) sum2 -= BASE; |
---|
148 | return sum1 | (sum2 << 16); |
---|
149 | } |
---|