[6] | 1 | /* |
---|
| 2 | * boot.c - TSAR bootloader implementation. |
---|
| 3 | * |
---|
| 4 | * Authors : Alain Greiner / Vu Son (2016) |
---|
| 5 | * |
---|
| 6 | * Copyright (c) UPMC Sorbonne Universites |
---|
| 7 | * |
---|
| 8 | * This file is part of ALMOS-MKH. |
---|
| 9 | * |
---|
| 10 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
| 11 | * under the terms of the GNU General Public License as published by |
---|
| 12 | * the Free Software Foundation; version 2.0 of the License. |
---|
| 13 | * |
---|
| 14 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 17 | * General Public License for more details. |
---|
| 18 | * |
---|
| 19 | * You should have received a copy of the GNU General Public License |
---|
| 20 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
| 21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
| 22 | */ |
---|
| 23 | |
---|
[1] | 24 | /**************************************************************************** |
---|
[6] | 25 | * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. * |
---|
[1] | 26 | * * |
---|
| 27 | * It supports clusterised shared memory multi-processor architectures, * |
---|
| 28 | * where each processor is identified by a composite index [cxy,lid], * |
---|
| 29 | * with one physical memory bank per cluster. * |
---|
| 30 | * * |
---|
| 31 | * The 'boot.elf' file (containing the boot-loader binary code) is stored * |
---|
| 32 | * on disk and is loaded into memory by bscpu (whose index is [0,0]), * |
---|
| 33 | * executing the generic preloader. * |
---|
| 34 | * * |
---|
| 35 | * 1) The boot-loader first phase is executed by bscpu only, while * |
---|
| 36 | * all other cores are waiting in the preloader. * |
---|
| 37 | * It does the following tasks: * |
---|
| 38 | * - load into the memory bank of cluster (0,0) the 'arch_info.bin' * |
---|
| 39 | * file (containing the hardware architecture description) and the * |
---|
| 40 | * 'kernel.elf' file, at temporary locations, * |
---|
| 41 | * - initializes the 'boot_info_t' structure in cluster(0,0) * |
---|
| 42 | * (there is 1 'boot_info_t' per cluster), which contains both * |
---|
| 43 | * global and cluster specific information that will be used for * |
---|
| 44 | * kernel initialisation. * |
---|
| 45 | * - activate CP0s in all other clusters, using IPIs. * |
---|
| 46 | * - wait completion reports from CP0s on a global barrier. * |
---|
| 47 | * * |
---|
| 48 | * 2) The boot-loader second phase is then executed in parallel by all * |
---|
| 49 | * CP0s (other than bscpu). Each CP0 performs the following tasks: * |
---|
| 50 | * - copies into the memory bank of the local cluster the 'boot.elf', * |
---|
| 51 | * the 'arch_info.bin' (at the same addresses as the 'boot.elf' and * |
---|
| 52 | * the 'arch_info.bin' in the memory bank of the cluster(0,0), and * |
---|
| 53 | * the kernel image (at address 0x0), * |
---|
| 54 | * - initializes the 'boot_info_t' structure of the local cluster, * |
---|
| 55 | * - activate all other cores in the same cluster (CPi). * |
---|
| 56 | * - wait local CPi completion reports on a local barrier. * |
---|
| 57 | * - report completion to bscpu on the global barrier. * |
---|
| 58 | * * |
---|
| 59 | * 3) The boot-loader third phase is executed in parallel by all cores. * |
---|
| 60 | * After passing the global barrier the bscpu: * |
---|
| 61 | * - activates the CPi of cluster(0,0), * |
---|
| 62 | * - blocks on the local barrier waiting for all local CPi to report * |
---|
| 63 | * completion on the local barrier, * |
---|
| 64 | * - moves the local kernel image from the temporary location to the * |
---|
| 65 | * address 0x0, (erasing the preloader code). * |
---|
| 66 | * * |
---|
| 67 | * 4) All cores have finished the boot phase, they jump to the kern_init() * |
---|
| 68 | * function (maybe not at the same time). * |
---|
| 69 | ****************************************************************************/ |
---|
| 70 | |
---|
| 71 | #include <elf-types.h> |
---|
[6] | 72 | #include <hal_types.h> |
---|
[1] | 73 | |
---|
[13] | 74 | #include <kernel_config.h> |
---|
[1] | 75 | #include <boot_config.h> |
---|
| 76 | |
---|
| 77 | #include <arch_info.h> |
---|
| 78 | #include <boot_info.h> |
---|
| 79 | |
---|
| 80 | #include <boot_utils.h> |
---|
| 81 | #include <boot_fat32.h> |
---|
| 82 | #include <boot_bdv_driver.h> |
---|
| 83 | #include <boot_hba_driver.h> |
---|
| 84 | #include <boot_tty_driver.h> |
---|
| 85 | |
---|
[6] | 86 | /***************************************************************************** |
---|
| 87 | * Macros. |
---|
[1] | 88 | ****************************************************************************/ |
---|
| 89 | |
---|
| 90 | #define PAGE_ROUND_DOWN(x) ((x) & (~PPM_PAGE_SIZE -1)) |
---|
| 91 | #define PAGE_ROUND_UP(x) (((x) + PPM_PAGE_SIZE-1) & \ |
---|
| 92 | (~(PPM_PAGE_SIZE-1))) |
---|
| 93 | |
---|
[6] | 94 | /***************************************************************************** |
---|
| 95 | * Global variables. |
---|
[1] | 96 | ****************************************************************************/ |
---|
| 97 | |
---|
| 98 | // synchronization variables. |
---|
| 99 | |
---|
[6] | 100 | volatile boot_remote_spinlock_t tty0_lock; // protect TTY0 access |
---|
| 101 | volatile boot_remote_barrier_t global_barrier; // synchronize CP0 cores |
---|
| 102 | volatile boot_remote_barrier_t local_barrier; // synchronize cores in one cluster |
---|
| 103 | uint32_t active_cp0s_nr; // number of expected CP0s |
---|
| 104 | |
---|
| 105 | // kernel segments layout variables |
---|
[1] | 106 | |
---|
[6] | 107 | uint32_t seg_kcode_base; // kcode segment base address |
---|
| 108 | uint32_t seg_kcode_size; // kcode segment size (bytes) |
---|
| 109 | uint32_t seg_kdata_base; // kdata segment base address |
---|
| 110 | uint32_t seg_kdata_size; // kdata segment size (bytes) |
---|
| 111 | uint32_t kernel_entry; // kernel entry point |
---|
[1] | 112 | |
---|
[6] | 113 | // address used by the WTI to activate remote CP0s |
---|
[1] | 114 | |
---|
[6] | 115 | extern void boot_entry(); // boot_loader entry point |
---|
[1] | 116 | |
---|
[6] | 117 | /********************************************************************************* |
---|
| 118 | * This function returns the printable string for each device type |
---|
| 119 | ********************************************************************************/ |
---|
[1] | 120 | char * device_type_str( uint32_t dev_type ) |
---|
| 121 | { |
---|
[6] | 122 | if ( dev_type == DEV_TYPE_RAM_SCL ) return "RAM_SCL"; |
---|
| 123 | else if( dev_type == DEV_TYPE_ROM_SCL ) return "ROM_SCL"; |
---|
| 124 | else if( dev_type == DEV_TYPE_FBF_SCL ) return "FBF_SCL"; |
---|
| 125 | else if( dev_type == DEV_TYPE_IOB_TSR ) return "IOB_TSR"; |
---|
[1] | 126 | else if( dev_type == DEV_TYPE_IOC_BDV ) return "IOC_BDV"; |
---|
| 127 | else if( dev_type == DEV_TYPE_IOC_HBA ) return "IOC_HBA"; |
---|
| 128 | else if( dev_type == DEV_TYPE_IOC_SDC ) return "IOC_SDC"; |
---|
| 129 | else if( dev_type == DEV_TYPE_IOC_SPI ) return "IOC_SPI"; |
---|
| 130 | else if( dev_type == DEV_TYPE_IOC_RDK ) return "IOC_RDK"; |
---|
[6] | 131 | else if( dev_type == DEV_TYPE_MMC_TSR ) return "MMC_TSR"; |
---|
| 132 | else if( dev_type == DEV_TYPE_DMA_SCL ) return "DMA_SCL"; |
---|
| 133 | else if( dev_type == DEV_TYPE_NIC_CBF ) return "NIC_CBF"; |
---|
| 134 | else if( dev_type == DEV_TYPE_TIM_SCL ) return "TIM_SCL"; |
---|
| 135 | else if( dev_type == DEV_TYPE_TXT_TTY ) return "TXT_TTY"; |
---|
| 136 | else if( dev_type == DEV_TYPE_ICU_XCU ) return "ICU_XCU"; |
---|
| 137 | else if( dev_type == DEV_TYPE_PIC_TSR ) return "PIC_TSR"; |
---|
| 138 | else return "undefined"; |
---|
[1] | 139 | } |
---|
| 140 | |
---|
[6] | 141 | /************************************************************************************ |
---|
[1] | 142 | * This function loads the arch_info.bin file into the boot cluster memory. |
---|
[6] | 143 | ***********************************************************************************/ |
---|
[1] | 144 | static void boot_archinfo_load() |
---|
| 145 | { |
---|
| 146 | archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
| 147 | |
---|
| 148 | // Load file into memory |
---|
| 149 | if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE)) |
---|
| 150 | { |
---|
| 151 | boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): " |
---|
| 152 | "<%s> file not found\n", |
---|
| 153 | ARCHINFO_PATHNAME); |
---|
| 154 | boot_exit(); |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | if (header->signature != ARCHINFO_SIGNATURE) |
---|
| 158 | { |
---|
| 159 | boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): " |
---|
| 160 | "<%s> file signature should be %x\n", |
---|
| 161 | ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE); |
---|
| 162 | boot_exit(); |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | #if DEBUG_BOOT_INFO |
---|
[6] | 166 | boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n", |
---|
| 167 | __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE ); |
---|
[1] | 168 | #endif |
---|
| 169 | |
---|
| 170 | } // boot_archinfo_load() |
---|
| 171 | |
---|
[6] | 172 | /************************************************************************************** |
---|
| 173 | * This function loads the 'kernel.elf' file into the boot cluster memory buffer, |
---|
| 174 | * analyzes it, and places the the two seg_kcode & seg_kdata segments at their final |
---|
| 175 | * physical adresses (just after the preloader zone). |
---|
| 176 | * It set the global variables defining the kernel layout. |
---|
| 177 | *************************************************************************************/ |
---|
[1] | 178 | static void boot_kernel_load() |
---|
| 179 | { |
---|
[6] | 180 | Elf32_Ehdr * elf_header; // pointer on kernel.elf header. |
---|
| 181 | Elf32_Phdr * program_header; // pointer on kernel.elf program header. |
---|
| 182 | uint32_t phdr_offset; // program header offset in kernel.elf file. |
---|
| 183 | uint32_t segments_nb; // number of segments in kernel.elf file. |
---|
| 184 | uint32_t seg_src_addr; // segment address in kernel.elf file (source). |
---|
| 185 | uint32_t seg_paddr; // segment local physical address of segment |
---|
| 186 | uint32_t seg_offset; // segment offset in kernel.elf file |
---|
| 187 | uint32_t seg_filesz; // segment size (bytes) in kernel.elf file |
---|
| 188 | uint32_t seg_memsz; // segment size (bytes) in memory image. |
---|
| 189 | bool_t kcode_found; // kcode segment found. |
---|
| 190 | bool_t kdata_found; // kdata segment found. |
---|
| 191 | uint32_t seg_id; // iterator for segments loop. |
---|
[1] | 192 | |
---|
[6] | 193 | #if DEBUG_BOOT_ELF |
---|
| 194 | boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n", |
---|
| 195 | __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() ); |
---|
| 196 | #endif |
---|
[1] | 197 | |
---|
[6] | 198 | // Load kernel.elf file into memory buffer |
---|
| 199 | if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) ) |
---|
[1] | 200 | { |
---|
[6] | 201 | boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n", |
---|
[1] | 202 | KERNEL_PATHNAME); |
---|
| 203 | boot_exit(); |
---|
| 204 | } |
---|
| 205 | |
---|
[6] | 206 | // get pointer to kernel.elf header |
---|
[1] | 207 | elf_header = (Elf32_Ehdr*)KERN_BASE; |
---|
| 208 | |
---|
[6] | 209 | // check signature |
---|
[1] | 210 | if ((elf_header->e_ident[EI_MAG0] != ELFMAG0) || |
---|
| 211 | (elf_header->e_ident[EI_MAG1] != ELFMAG1) || |
---|
| 212 | (elf_header->e_ident[EI_MAG2] != ELFMAG2) || |
---|
| 213 | (elf_header->e_ident[EI_MAG3] != ELFMAG3)) |
---|
| 214 | { |
---|
| 215 | boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): " |
---|
| 216 | "<%s> is not an ELF file\n", |
---|
| 217 | KERNEL_PATHNAME); |
---|
| 218 | boot_exit(); |
---|
| 219 | } |
---|
| 220 | |
---|
[6] | 221 | // Get program header table offset and number of segments |
---|
[1] | 222 | phdr_offset = elf_header->e_phoff; |
---|
| 223 | segments_nb = elf_header->e_phnum; |
---|
| 224 | |
---|
[6] | 225 | // Get program header table pointer |
---|
[1] | 226 | program_header = (Elf32_Phdr*)(KERN_BASE + phdr_offset); |
---|
| 227 | |
---|
[6] | 228 | // loop on segments |
---|
| 229 | kcode_found = false; |
---|
| 230 | kdata_found = false; |
---|
[1] | 231 | for (seg_id = 0; seg_id < segments_nb; seg_id++) |
---|
| 232 | { |
---|
[6] | 233 | if (program_header[seg_id].p_type == PT_LOAD) // Found one loadable segment |
---|
[1] | 234 | { |
---|
[6] | 235 | // Get segment attributes. |
---|
[1] | 236 | seg_paddr = program_header[seg_id].p_paddr; |
---|
| 237 | seg_offset = program_header[seg_id].p_offset; |
---|
| 238 | seg_filesz = program_header[seg_id].p_filesz; |
---|
| 239 | seg_memsz = program_header[seg_id].p_memsz; |
---|
| 240 | |
---|
[6] | 241 | // get segment base address in buffer |
---|
[1] | 242 | seg_src_addr = (uint32_t)KERN_BASE + seg_offset; |
---|
| 243 | |
---|
[6] | 244 | // Load segment to its final physical memory address |
---|
| 245 | boot_memcpy( (void*)seg_paddr, |
---|
| 246 | (void*)seg_src_addr, |
---|
| 247 | seg_filesz ); |
---|
| 248 | |
---|
| 249 | #if DEBUG_BOOT_ELF |
---|
| 250 | boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n" |
---|
| 251 | " base = %x / size = %x\n", |
---|
| 252 | __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz ); |
---|
| 253 | #endif |
---|
| 254 | |
---|
[1] | 255 | // Fill remaining memory with zero if (filesz < memsz). |
---|
[6] | 256 | if( seg_memsz < seg_filesz ) |
---|
[1] | 257 | { |
---|
[6] | 258 | boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz); |
---|
[1] | 259 | } |
---|
| 260 | |
---|
[6] | 261 | // Note: we suppose that the 'kernel.elf' file contains only 2 |
---|
| 262 | // loadable segments ktext & kdata and that the main |
---|
| 263 | // difference between these two is the WRITE permission: ktext |
---|
| 264 | // contains read-only instructions and read_only data, |
---|
| 265 | // while kdata contains writable data. |
---|
| 266 | |
---|
| 267 | if ((program_header[seg_id].p_flags & PF_W) == 0) // kcode segment |
---|
[1] | 268 | { |
---|
[6] | 269 | if( kcode_found ) |
---|
| 270 | { |
---|
| 271 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
| 272 | " two loadable kcode segments found\n", |
---|
| 273 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
| 274 | boot_exit(); |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | kcode_found = true; |
---|
| 278 | seg_kcode_base = seg_paddr; |
---|
| 279 | seg_kcode_size = seg_memsz; |
---|
[1] | 280 | } |
---|
[6] | 281 | else // kdata segment |
---|
| 282 | { |
---|
| 283 | if( kdata_found ) |
---|
| 284 | { |
---|
| 285 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
| 286 | " two loadable kdata segments found\n", |
---|
| 287 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
| 288 | boot_exit(); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | kdata_found = true; |
---|
| 292 | seg_kdata_base = seg_paddr; |
---|
| 293 | seg_kdata_size = seg_memsz; |
---|
| 294 | } |
---|
[1] | 295 | } |
---|
| 296 | } |
---|
| 297 | |
---|
[6] | 298 | // check kcode & kdata segments found |
---|
| 299 | if( kcode_found == false ) |
---|
| 300 | { |
---|
| 301 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
| 302 | " kcode segment not found\n", |
---|
| 303 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
| 304 | boot_exit(); |
---|
| 305 | } |
---|
| 306 | if( kdata_found == false ) |
---|
| 307 | { |
---|
| 308 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
| 309 | " kdata segment not found\n", |
---|
| 310 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
| 311 | boot_exit(); |
---|
| 312 | } |
---|
| 313 | |
---|
| 314 | // set entry point |
---|
[1] | 315 | kernel_entry = (uint32_t)elf_header->e_entry; |
---|
| 316 | |
---|
[6] | 317 | #if DEBUG_BOOT_ELF |
---|
| 318 | boot_printf("\n[BOOT INFO] %s successfully completed for file %s at cycle %d\n", |
---|
| 319 | __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() ); |
---|
| 320 | #endif |
---|
| 321 | |
---|
[1] | 322 | } // boot_kernel_load() |
---|
| 323 | |
---|
[6] | 324 | /************************************************************************************* |
---|
| 325 | * This function initializes the boot_info_t structure for a given cluster. |
---|
| 326 | * @ boot_info : pointer to local boot_info_t structure |
---|
| 327 | * @ cxy : cluster identifier |
---|
| 328 | ************************************************************************************/ |
---|
[1] | 329 | static void boot_info_init( boot_info_t * boot_info, |
---|
| 330 | cxy_t cxy ) |
---|
| 331 | { |
---|
[6] | 332 | archinfo_header_t * header; |
---|
[1] | 333 | archinfo_core_t * core_base; |
---|
| 334 | archinfo_cluster_t * cluster_base; |
---|
| 335 | archinfo_device_t * device_base; |
---|
| 336 | archinfo_irq_t * irq_base; |
---|
| 337 | |
---|
| 338 | archinfo_cluster_t * cluster; |
---|
[6] | 339 | archinfo_cluster_t * my_cluster = NULL; // target cluster |
---|
| 340 | archinfo_cluster_t * io_cluster = NULL; // cluster containing ext. peripherals |
---|
| 341 | |
---|
[1] | 342 | archinfo_core_t * core; |
---|
| 343 | uint32_t core_id; |
---|
| 344 | archinfo_device_t * device; |
---|
| 345 | uint32_t device_id; |
---|
| 346 | archinfo_irq_t * irq; |
---|
| 347 | uint32_t irq_id; |
---|
| 348 | |
---|
| 349 | boot_device_t * boot_dev; |
---|
| 350 | |
---|
[6] | 351 | // get pointer on ARCHINFO header and on the four arch_info arrays |
---|
| 352 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
| 353 | core_base = archinfo_get_core_base (header); |
---|
| 354 | cluster_base = archinfo_get_cluster_base(header); |
---|
| 355 | device_base = archinfo_get_device_base (header); |
---|
| 356 | irq_base = archinfo_get_irq_base (header); |
---|
| 357 | |
---|
[1] | 358 | // Initialize global platform parameters |
---|
| 359 | boot_info->x_size = header->x_size; |
---|
| 360 | boot_info->y_size = header->y_size; |
---|
| 361 | boot_info->x_width = header->x_width; |
---|
| 362 | boot_info->y_width = header->y_width; |
---|
| 363 | boot_info->paddr_width = header->paddr_width; |
---|
| 364 | boot_info->io_cxy = header->io_cxy; |
---|
| 365 | |
---|
| 366 | // Initialize kernel segments |
---|
[6] | 367 | boot_info->kernel_code_start = seg_kcode_base; |
---|
| 368 | boot_info->kernel_code_end = seg_kcode_base + seg_kcode_size; |
---|
| 369 | boot_info->kernel_data_start = seg_kdata_base; |
---|
| 370 | boot_info->kernel_data_end = seg_kdata_base + seg_kdata_size; |
---|
[1] | 371 | |
---|
[6] | 372 | // loop on arch_info clusters to get relevant pointers |
---|
[1] | 373 | for (cluster = cluster_base; |
---|
| 374 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
| 375 | cluster++) |
---|
| 376 | { |
---|
[6] | 377 | if( cluster->cxy == cxy ) my_cluster = cluster; |
---|
| 378 | if( cluster->cxy == header->io_cxy ) io_cluster = cluster; |
---|
| 379 | } |
---|
[1] | 380 | |
---|
[6] | 381 | if( my_cluster == NULL ) |
---|
| 382 | { |
---|
| 383 | boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n", |
---|
| 384 | __FUNCTION__ , cxy ); |
---|
| 385 | boot_exit(); |
---|
| 386 | } |
---|
[1] | 387 | |
---|
[6] | 388 | if( io_cluster == NULL ) |
---|
| 389 | { |
---|
| 390 | boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n", |
---|
| 391 | __FUNCTION__ , header->io_cxy ); |
---|
| 392 | boot_exit(); |
---|
| 393 | } |
---|
| 394 | |
---|
[13] | 395 | // loop on arch-info peripherals in io_cluster, |
---|
[6] | 396 | // to initialize the boot_info array of external peripherals |
---|
| 397 | |
---|
[1] | 398 | #if DEBUG_BOOT_INFO |
---|
[13] | 399 | boot_printf("\n[BOOT INFO] %s : external peripherals at cycle %d\n", |
---|
| 400 | __FUNCTION__ , cxy , boot_get_proctime() ); |
---|
[1] | 401 | #endif |
---|
[6] | 402 | |
---|
| 403 | device_id = 0; |
---|
| 404 | for (device = &device_base[io_cluster->device_offset]; |
---|
| 405 | device < &device_base[io_cluster->device_offset + io_cluster->devices]; |
---|
| 406 | device++ ) |
---|
| 407 | { |
---|
| 408 | // initialise one entry for each external peripheral |
---|
| 409 | if( (device->type != DEV_TYPE_RAM_SCL) && |
---|
| 410 | (device->type != DEV_TYPE_ICU_XCU) && |
---|
| 411 | (device->type != DEV_TYPE_MMC_TSR) && |
---|
| 412 | (device->type != DEV_TYPE_DMA_SCL) ) |
---|
[1] | 413 | { |
---|
[6] | 414 | boot_dev = &boot_info->ext_dev[device_id]; |
---|
[1] | 415 | |
---|
[6] | 416 | boot_dev->type = device->type; |
---|
| 417 | boot_dev->base = device->base; |
---|
| 418 | boot_dev->channels = device->channels; |
---|
| 419 | boot_dev->param0 = device->arg0; |
---|
| 420 | boot_dev->param1 = device->arg1; |
---|
| 421 | boot_dev->param2 = device->arg2; |
---|
| 422 | boot_dev->param3 = device->arg3; |
---|
| 423 | boot_dev->irqs = device->irqs; |
---|
| 424 | |
---|
| 425 | device_id++; |
---|
| 426 | |
---|
[1] | 427 | #if DEBUG_BOOT_INFO |
---|
[6] | 428 | boot_printf(" - %s : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
| 429 | device_type_str( device->type ) , device->base , device->size , |
---|
| 430 | device->channels , device->irqs ); |
---|
[1] | 431 | #endif |
---|
[13] | 432 | } |
---|
[6] | 433 | |
---|
| 434 | // Initialize array of irq descriptors for PIC |
---|
| 435 | if (device->type == DEV_TYPE_PIC_TSR) |
---|
| 436 | { |
---|
| 437 | for (irq_id = 0; irq_id < CONFIG_MAX_IRQS_PER_PIC; irq_id++) |
---|
| 438 | { |
---|
| 439 | boot_dev->irq[irq_id].valid = 0; |
---|
| 440 | } |
---|
[1] | 441 | |
---|
[6] | 442 | for (irq = &irq_base[device->irq_offset]; |
---|
| 443 | irq < &irq_base[device->irq_offset + device->irqs]; |
---|
| 444 | irq++) |
---|
| 445 | { |
---|
| 446 | boot_dev->irq[irq->port].valid = 1; |
---|
| 447 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
| 448 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
| 449 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
| 450 | |
---|
| 451 | #if DEBUG_BOOT_INFO |
---|
| 452 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
| 453 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
| 454 | #endif |
---|
| 455 | } |
---|
[1] | 456 | } |
---|
[13] | 457 | } // end loop on io_cluster peripherals |
---|
[1] | 458 | |
---|
[6] | 459 | // initialize number of external peripherals |
---|
| 460 | boot_info->ext_dev_nr = device_id; |
---|
| 461 | |
---|
| 462 | // Initialize cluster specific resources |
---|
| 463 | boot_info->cxy = my_cluster->cxy; |
---|
| 464 | |
---|
| 465 | #if DEBUG_BOOT_INFO |
---|
| 466 | boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ ); |
---|
| 467 | #endif |
---|
| 468 | |
---|
| 469 | // Initialize array of core descriptors |
---|
| 470 | core_id = 0; |
---|
| 471 | for (core = &core_base[my_cluster->core_offset]; |
---|
| 472 | core < &core_base[my_cluster->core_offset + my_cluster->cores]; |
---|
| 473 | core++ ) |
---|
| 474 | { |
---|
| 475 | boot_info->core[core_id].gid = (gid_t)core->gid; |
---|
| 476 | boot_info->core[core_id].lid = (lid_t)core->lid; |
---|
| 477 | boot_info->core[core_id].cxy = (cxy_t)core->cxy; |
---|
| 478 | |
---|
| 479 | #if DEBUG_BOOT_INFO |
---|
| 480 | boot_printf(" - core_gid = %x : cxy = %x / lid = %d\n", |
---|
| 481 | core->gid , core->cxy , core->lid ); |
---|
| 482 | #endif |
---|
| 483 | core_id++; |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | // Initialize number of cores in my_cluster |
---|
| 487 | boot_info->cores_nr = core_id; |
---|
| 488 | |
---|
[13] | 489 | // initialise internal devices (RAM, XCU, MMC, DMA) |
---|
| 490 | // set default values, then scan all local devices |
---|
[6] | 491 | |
---|
| 492 | #if DEBUG_BOOT_INFO |
---|
| 493 | boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", __FUNCTION__ ); |
---|
| 494 | #endif |
---|
| 495 | |
---|
[13] | 496 | boot_info->pages_nr = 0; |
---|
| 497 | boot_info->dev_icu.channels = 0; |
---|
| 498 | boot_info->dev_mmc.channels = 0; |
---|
| 499 | boot_info->dev_dma.channels = 0; |
---|
| 500 | |
---|
[6] | 501 | for (device = &device_base[my_cluster->device_offset]; |
---|
| 502 | device < &device_base[my_cluster->device_offset + my_cluster->devices]; |
---|
| 503 | device++ ) |
---|
| 504 | { |
---|
| 505 | if (device->type == DEV_TYPE_RAM_SCL) |
---|
| 506 | { |
---|
[13] | 507 | // set total number of physical memory pages in cluster |
---|
[6] | 508 | boot_info->pages_nr = device->size >> CONFIG_PPM_PAGE_SHIFT; |
---|
| 509 | |
---|
| 510 | // Get the last address allocated for the kernel segments |
---|
| 511 | uint32_t end; |
---|
| 512 | if( boot_info->kernel_code_end > boot_info->kernel_data_end ) |
---|
[1] | 513 | { |
---|
[6] | 514 | end = boot_info->kernel_code_end; |
---|
[1] | 515 | } |
---|
[6] | 516 | else |
---|
[1] | 517 | { |
---|
[6] | 518 | end = boot_info->kernel_data_end; |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | // Compute the number of pages allocated for the kernel. |
---|
| 522 | if( (end & CONFIG_PPM_PAGE_MASK) == 0 ) |
---|
| 523 | { |
---|
| 524 | boot_info->pages_offset = end >> CONFIG_PPM_PAGE_SHIFT; |
---|
| 525 | } |
---|
| 526 | else |
---|
| 527 | { |
---|
| 528 | boot_info->pages_offset = (end >> CONFIG_PPM_PAGE_SHIFT) + 1; |
---|
| 529 | } |
---|
[1] | 530 | |
---|
| 531 | #if DEBUG_BOOT_INFO |
---|
[13] | 532 | boot_printf(" - RAM : %x pages / first free page = %x\n", |
---|
[6] | 533 | boot_info->pages_nr , boot_info->pages_offset ); |
---|
[1] | 534 | #endif |
---|
[6] | 535 | } |
---|
[13] | 536 | else if (device->type == DEV_TYPE_ICU_XCU) |
---|
[6] | 537 | { |
---|
[13] | 538 | boot_dev = &boot_info->dev_icu; |
---|
| 539 | |
---|
| 540 | boot_dev->type = device->type; |
---|
| 541 | boot_dev->base = device->base; |
---|
| 542 | boot_dev->channels = device->channels; |
---|
| 543 | boot_dev->param0 = device->arg0; |
---|
| 544 | boot_dev->param1 = device->arg1; |
---|
| 545 | boot_dev->param2 = device->arg2; |
---|
| 546 | boot_dev->param3 = device->arg3; |
---|
| 547 | boot_dev->irqs = device->irqs; |
---|
| 548 | |
---|
| 549 | #if DEBUG_BOOT_INFO |
---|
| 550 | boot_printf(" - XCU : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
| 551 | device->base , device->size , device->channels , device->irqs ); |
---|
| 552 | #endif |
---|
| 553 | |
---|
[6] | 554 | for (irq_id = 0; irq_id < CONFIG_MAX_HWIS_PER_ICU; irq_id++) |
---|
| 555 | { |
---|
| 556 | boot_dev->irq[irq_id].valid = 0; |
---|
[1] | 557 | } |
---|
| 558 | |
---|
[6] | 559 | for (irq = &irq_base[device->irq_offset]; |
---|
| 560 | irq < &irq_base[device->irq_offset + device->irqs]; |
---|
| 561 | irq++) |
---|
[1] | 562 | { |
---|
[6] | 563 | boot_dev->irq[irq->port].valid = 1; |
---|
| 564 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
| 565 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
| 566 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
[1] | 567 | |
---|
| 568 | #if DEBUG_BOOT_INFO |
---|
| 569 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
| 570 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
| 571 | #endif |
---|
| 572 | |
---|
| 573 | } |
---|
| 574 | } |
---|
[13] | 575 | else if( device->type == DEV_TYPE_MMC_TSR ) |
---|
| 576 | { |
---|
| 577 | boot_dev = &boot_info->dev_mmc; |
---|
[1] | 578 | |
---|
[13] | 579 | boot_dev->type = device->type; |
---|
| 580 | boot_dev->base = device->base; |
---|
| 581 | boot_dev->channels = device->channels; |
---|
| 582 | boot_dev->irqs = 0; |
---|
[1] | 583 | |
---|
[13] | 584 | #if DEBUG_BOOT_INFO |
---|
| 585 | boot_printf(" - MMC : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
| 586 | device->base , device->size , device->channels , device->irqs ); |
---|
| 587 | #endif |
---|
| 588 | } |
---|
| 589 | else if( device->type == DEV_TYPE_DMA_SCL ) |
---|
| 590 | { |
---|
| 591 | boot_dev = &boot_info->dev_dma; |
---|
| 592 | |
---|
| 593 | boot_dev->type = device->type; |
---|
| 594 | boot_dev->base = device->base; |
---|
| 595 | boot_dev->channels = device->channels; |
---|
| 596 | boot_dev->irqs = 0; |
---|
| 597 | |
---|
| 598 | #if DEBUG_BOOT_INFO |
---|
| 599 | boot_printf(" - DMA : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
| 600 | device->base , device->size , device->channels , device->irqs ); |
---|
| 601 | #endif |
---|
| 602 | } |
---|
| 603 | } // end loop on local peripherals |
---|
| 604 | |
---|
[6] | 605 | // set boot_info signature |
---|
| 606 | boot_info->signature = BOOT_INFO_SIGNATURE; |
---|
| 607 | |
---|
[1] | 608 | } // boot_info_init() |
---|
| 609 | |
---|
[6] | 610 | /*********************************************************************************** |
---|
| 611 | * This function check the local boot_info_t structure for a given core. |
---|
| 612 | * @ boot_info : pointer to local 'boot_info_t' structure to be checked. |
---|
| 613 | * @ lid : core local identifier, index the core descriptor table. |
---|
| 614 | **********************************************************************************/ |
---|
[1] | 615 | static void boot_check_core( boot_info_t * boot_info, |
---|
| 616 | lid_t lid) |
---|
| 617 | { |
---|
| 618 | gid_t gid; // global hardware identifier of this core |
---|
| 619 | boot_core_t * this; // BOOT_INFO core descriptor of this core. |
---|
| 620 | |
---|
| 621 | // Get core hardware identifier |
---|
| 622 | gid = (gid_t)boot_get_procid(); |
---|
| 623 | |
---|
| 624 | // get pointer on core descriptor |
---|
| 625 | this = &boot_info->core[lid]; |
---|
| 626 | |
---|
| 627 | if ( (this->gid != gid) || (this->cxy != boot_info->cxy) ) |
---|
| 628 | { |
---|
| 629 | boot_printf("\n[BOOT ERROR] in boot_check_core() :\n" |
---|
| 630 | " - boot_info cxy = %x\n" |
---|
| 631 | " - boot_info lid = %d\n" |
---|
| 632 | " - boot_info gid = %x\n" |
---|
| 633 | " - actual gid = %x\n", |
---|
| 634 | this->cxy , this->lid , this->gid , gid ); |
---|
| 635 | boot_exit(); |
---|
| 636 | } |
---|
| 637 | |
---|
| 638 | } // boot_check_core() |
---|
| 639 | |
---|
[6] | 640 | /********************************************************************************* |
---|
| 641 | * This function is called by CP0 in cluster(0,0) to activate all other CP0s. |
---|
[1] | 642 | * It returns the number of CP0s actually activated. |
---|
[6] | 643 | ********************************************************************************/ |
---|
| 644 | static uint32_t boot_wake_all_cp0s() |
---|
[1] | 645 | { |
---|
[6] | 646 | archinfo_header_t* header; // Pointer on ARCHINFO header |
---|
| 647 | archinfo_cluster_t* cluster_base; // Pointer on ARCHINFO clusters base |
---|
| 648 | archinfo_cluster_t* cluster; // Iterator for loop on clusters |
---|
| 649 | archinfo_device_t* device_base; // Pointer on ARCHINFO devices base |
---|
| 650 | archinfo_device_t* device; // Iterator for loop on devices |
---|
| 651 | uint32_t cp0_nb = 0; // CP0s counter |
---|
[1] | 652 | |
---|
| 653 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
| 654 | cluster_base = archinfo_get_cluster_base(header); |
---|
| 655 | device_base = archinfo_get_device_base (header); |
---|
| 656 | |
---|
| 657 | // loop on all clusters |
---|
| 658 | for (cluster = cluster_base; |
---|
| 659 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
| 660 | cluster++) |
---|
| 661 | { |
---|
| 662 | // Skip boot cluster. |
---|
| 663 | if (cluster->cxy == BOOT_CORE_CXY) |
---|
| 664 | continue; |
---|
| 665 | |
---|
| 666 | // Skip clusters without core (thus without CP0). |
---|
| 667 | if (cluster->cores == 0) |
---|
| 668 | continue; |
---|
| 669 | |
---|
| 670 | // Skip clusters without device (thus without XICU). |
---|
| 671 | if (cluster->devices == 0) |
---|
| 672 | continue; |
---|
| 673 | |
---|
[6] | 674 | // search XICU device associated to CP0, and send a WTI to activate it |
---|
[1] | 675 | for (device = &device_base[cluster->device_offset]; |
---|
| 676 | device < &device_base[cluster->device_offset + cluster->devices]; |
---|
| 677 | device++) |
---|
| 678 | { |
---|
[6] | 679 | if (device->type == DEV_TYPE_ICU_XCU) |
---|
[1] | 680 | { |
---|
[6] | 681 | |
---|
| 682 | #if DEBUG_BOOT_WAKUP |
---|
| 683 | boot_printf("\n[BOOT] core[%x][0] activated at cycle %d\n", |
---|
| 684 | cluster->cxy , boot_get_proctime ); |
---|
| 685 | #endif |
---|
| 686 | |
---|
[1] | 687 | boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry); |
---|
| 688 | cp0_nb++; |
---|
| 689 | } |
---|
| 690 | } |
---|
| 691 | } |
---|
| 692 | return cp0_nb; |
---|
| 693 | |
---|
| 694 | } // boot_wake_cp0() |
---|
| 695 | |
---|
[6] | 696 | /********************************************************************************* |
---|
| 697 | * This function is called by all CP0 to activate all local CPi cores. |
---|
| 698 | * @ boot_info : pointer to local 'boot_info_t' structure, used to find |
---|
| 699 | * the XICU device associated with local CPi base addresses. |
---|
| 700 | *********************************************************************************/ |
---|
| 701 | static void boot_wake_local_cores(boot_info_t * boot_info) |
---|
[1] | 702 | { |
---|
[6] | 703 | boot_device_t * device; // Iterator on devices |
---|
| 704 | unsigned int core_id; // Iterator on cores |
---|
[1] | 705 | |
---|
[13] | 706 | device = &boot_info->dev_icu; |
---|
| 707 | |
---|
| 708 | // loop on cores |
---|
| 709 | for (core_id = 1; core_id < boot_info->cores_nr; core_id++) |
---|
[1] | 710 | { |
---|
[6] | 711 | |
---|
| 712 | #if DEBUG_BOOT_WAKUP |
---|
| 713 | boot_printf("\n[BOOT] core[%x][%d] activated at cycle %d\n", |
---|
| 714 | boot_info->cxy , core_id , boot_get_proctime() ); |
---|
| 715 | #endif |
---|
[13] | 716 | boot_remote_sw( (xptr_t)(device->base + (core_id << 2)) , (uint32_t)boot_entry ); |
---|
[1] | 717 | } |
---|
| 718 | } // boot_wake_local_cores() |
---|
| 719 | |
---|
| 720 | |
---|
[6] | 721 | /********************************************************************************* |
---|
[1] | 722 | * This main function of the boot-loader is called by the boot_entry() |
---|
| 723 | * function, and executed by all cores. |
---|
| 724 | * The arguments values are computed by the boot_entry code. |
---|
[6] | 725 | * @ lid : core local identifier, |
---|
[1] | 726 | * @ cxy : cluster identifier, |
---|
[6] | 727 | *********************************************************************************/ |
---|
[1] | 728 | void boot_loader( lid_t lid, |
---|
| 729 | cxy_t cxy ) |
---|
| 730 | { |
---|
[6] | 731 | boot_info_t * boot_info; // pointer on local boot_info_t structure |
---|
[1] | 732 | |
---|
| 733 | if (lid == 0) |
---|
| 734 | { |
---|
[6] | 735 | /**************************************************** |
---|
| 736 | * PHASE A : only CP0 in boot cluster executes it |
---|
| 737 | ***************************************************/ |
---|
[1] | 738 | if (cxy == BOOT_CORE_CXY) |
---|
| 739 | { |
---|
[6] | 740 | boot_printf("\n[BOOT] core[%x][%d] enters at cycle %d\n", |
---|
| 741 | cxy , lid , boot_get_proctime() ); |
---|
[1] | 742 | |
---|
| 743 | // Initialize IOC driver |
---|
| 744 | if (USE_IOC_BDV) boot_bdv_init(); |
---|
| 745 | else if (USE_IOC_HBA) boot_hba_init(); |
---|
[6] | 746 | // else if (USE_IOC_SDC) boot_sdc_init(); |
---|
| 747 | // else if (USE_IOC_SPI) boot_spi_init(); |
---|
[1] | 748 | else if (!USE_IOC_RDK) |
---|
| 749 | { |
---|
[6] | 750 | boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n"); |
---|
[1] | 751 | boot_exit(); |
---|
| 752 | } |
---|
| 753 | |
---|
[6] | 754 | // Initialize FAT32. |
---|
[1] | 755 | boot_fat32_init(); |
---|
| 756 | |
---|
[6] | 757 | // Load the 'kernel.elf' file into memory from IOC, and set |
---|
| 758 | // the global variables defining the kernel layout |
---|
| 759 | boot_kernel_load(); |
---|
| 760 | |
---|
| 761 | boot_printf("\n[BOOT] core[%x][%d] loaded kernel at cycle %d\n", |
---|
| 762 | cxy , lid , boot_get_proctime() ); |
---|
| 763 | |
---|
[1] | 764 | // Load the arch_info.bin file into memory. |
---|
| 765 | boot_archinfo_load(); |
---|
| 766 | |
---|
[6] | 767 | // Get local boot_info_t structure base address. |
---|
[1] | 768 | // It is the first structure in the .kdata segment. |
---|
[6] | 769 | boot_info = (boot_info_t *)seg_kdata_base; |
---|
[1] | 770 | |
---|
[6] | 771 | // Initialize local boot_info_t structure. |
---|
| 772 | boot_info_init( boot_info , cxy ); |
---|
| 773 | |
---|
| 774 | // check boot_info signature |
---|
[1] | 775 | if (boot_info->signature != BOOT_INFO_SIGNATURE) |
---|
| 776 | { |
---|
[6] | 777 | boot_printf("\n[BOOT ERROR] in %s reported by core[%x][%d]\n" |
---|
| 778 | " illegal boot_info signature / should be %x\n", |
---|
| 779 | __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE ); |
---|
[1] | 780 | boot_exit(); |
---|
| 781 | } |
---|
| 782 | |
---|
[6] | 783 | boot_printf("\n[BOOT] core[%x][%d] loaded boot_info at cycle %d\n", |
---|
| 784 | cxy , lid , boot_get_proctime() ); |
---|
[1] | 785 | |
---|
| 786 | // Check core information. |
---|
| 787 | boot_check_core(boot_info, lid); |
---|
| 788 | |
---|
[6] | 789 | // Activate other CP0s / get number of active CP0s |
---|
| 790 | active_cp0s_nr = boot_wake_all_cp0s() + 1; |
---|
[1] | 791 | |
---|
[6] | 792 | // Wait until all clusters (i.e all CP0s) ready to enter kernel. |
---|
| 793 | boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , |
---|
| 794 | active_cp0s_nr ); |
---|
[1] | 795 | |
---|
[6] | 796 | // activate other local cores |
---|
| 797 | boot_wake_local_cores( boot_info ); |
---|
[1] | 798 | |
---|
[6] | 799 | // Wait until all local cores in cluster ready |
---|
| 800 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , |
---|
| 801 | boot_info->cores_nr ); |
---|
[1] | 802 | } |
---|
[6] | 803 | /****************************************************************** |
---|
| 804 | * PHASE B : all CP0s other than CP0 in boot cluster execute it |
---|
| 805 | *****************************************************************/ |
---|
[1] | 806 | else |
---|
| 807 | { |
---|
[6] | 808 | // at this point, all INSTRUCTION address extension registers |
---|
| 809 | // point on cluster(0,0), but the DATA extension registers point |
---|
| 810 | // already on the local cluster to use the local stack. |
---|
| 811 | // To access the bootloader global variables we must first copy |
---|
| 812 | // the boot code (data and instructions) in the local cluster. |
---|
| 813 | boot_remote_memcpy( XPTR( cxy , BOOT_BASE ), |
---|
| 814 | XPTR( BOOT_CORE_CXY , BOOT_BASE ), |
---|
| 815 | BOOT_MAX_SIZE ); |
---|
[1] | 816 | |
---|
[6] | 817 | // from now, it is safe to refer to the boot code global variables |
---|
| 818 | boot_printf("\n[BOOT] core[%x][%d] replicated boot code at cycle %d\n", |
---|
| 819 | cxy , lid , boot_get_proctime() ); |
---|
[1] | 820 | |
---|
[6] | 821 | // switch to the INSTRUCTION local memory space, to avoid contention. |
---|
[1] | 822 | asm volatile("mtc2 %0, $25" :: "r"(cxy)); |
---|
| 823 | |
---|
[6] | 824 | // Copy the arch_info.bin file into the local memory. |
---|
[1] | 825 | boot_remote_memcpy(XPTR(cxy, ARCHINFO_BASE), |
---|
| 826 | XPTR(BOOT_CORE_CXY, ARCHINFO_BASE), |
---|
[6] | 827 | ARCHINFO_MAX_SIZE ); |
---|
[1] | 828 | |
---|
[6] | 829 | boot_printf("\n[BOOT] core[%x][%d] replicated arch_info at cycle %d\n", |
---|
| 830 | cxy , lid , boot_get_proctime() ); |
---|
[1] | 831 | |
---|
[6] | 832 | // Copy the kcode segment into local memory |
---|
| 833 | boot_remote_memcpy( XPTR( cxy , seg_kcode_base ), |
---|
| 834 | XPTR( BOOT_CORE_CXY , seg_kcode_base ), |
---|
| 835 | seg_kcode_size ); |
---|
[1] | 836 | |
---|
[6] | 837 | // Copy the kdata segment into local memory |
---|
| 838 | boot_remote_memcpy( XPTR( cxy , seg_kdata_base ), |
---|
| 839 | XPTR( BOOT_CORE_CXY , seg_kdata_base ), |
---|
| 840 | seg_kdata_size ); |
---|
| 841 | |
---|
| 842 | boot_printf("\n[BOOT] core[%x][%d] replicated kernel code at cycle %d\n", |
---|
| 843 | cxy , lid , boot_get_proctime() ); |
---|
| 844 | |
---|
| 845 | // Get local boot_info_t structure base address. |
---|
| 846 | boot_info = (boot_info_t*)seg_kdata_base; |
---|
| 847 | |
---|
[1] | 848 | // Initialize local boot_info_t structure. |
---|
[6] | 849 | boot_info_init( boot_info , cxy ); |
---|
[1] | 850 | |
---|
| 851 | // Check core information. |
---|
[6] | 852 | boot_check_core( boot_info , lid ); |
---|
[1] | 853 | |
---|
[6] | 854 | // get number of active clusters from BOOT_CORE cluster |
---|
| 855 | uint32_t count = boot_remote_lw( XPTR( BOOT_CORE_CXY , &active_cp0s_nr ) ); |
---|
[1] | 856 | |
---|
[6] | 857 | // Wait until all clusters (i.e all CP0s) ready to enter kernel |
---|
| 858 | boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count ); |
---|
[1] | 859 | |
---|
[6] | 860 | // activate other local cores |
---|
| 861 | boot_wake_local_cores( boot_info ); |
---|
| 862 | |
---|
| 863 | // Wait until all local cores in cluster ready |
---|
| 864 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , |
---|
| 865 | boot_info->cores_nr ); |
---|
[1] | 866 | } |
---|
| 867 | } |
---|
| 868 | else |
---|
| 869 | { |
---|
| 870 | /*************************************************************** |
---|
[6] | 871 | * PHASE C: all non CP0 cores in all clusters execute it |
---|
[1] | 872 | **************************************************************/ |
---|
| 873 | |
---|
[6] | 874 | // Switch to the INSTRUCTIONS local memory space |
---|
| 875 | // to avoid contention at the boot cluster. |
---|
| 876 | asm volatile("mtc2 %0, $25" :: "r"(cxy)); |
---|
[1] | 877 | |
---|
[6] | 878 | // Get local boot_info_t structure base address. |
---|
| 879 | boot_info = (boot_info_t *)seg_kdata_base; |
---|
[1] | 880 | |
---|
[6] | 881 | // Check core information |
---|
| 882 | boot_check_core(boot_info, lid); |
---|
[1] | 883 | |
---|
[6] | 884 | // Wait until all local cores in cluster ready |
---|
| 885 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr ); |
---|
[1] | 886 | } |
---|
| 887 | |
---|
[13] | 888 | // Ech core compute stack pointer to the kernel idle-thread descriptor. |
---|
| 889 | // The array of idle-thread descriptors is allocated in the kdata segment, |
---|
| 890 | // just after the boot_info structure |
---|
[1] | 891 | |
---|
[13] | 892 | uint32_t sp; |
---|
| 893 | uint32_t base; |
---|
| 894 | uint32_t offset = sizeof( boot_info_t ); |
---|
| 895 | uint32_t pmask = CONFIG_PPM_PAGE_MASK; |
---|
| 896 | uint32_t psize = CONFIG_PPM_PAGE_SIZE; |
---|
| 897 | |
---|
| 898 | // compute base address of idle thread descriptors array |
---|
| 899 | if( offset & pmask ) base = seg_kdata_base + (offset & ~pmask) + psize; |
---|
| 900 | else base = seg_kdata_base + offset; |
---|
| 901 | |
---|
| 902 | // compute stack pointer |
---|
| 903 | sp = base + ((lid + 1) * CONFIG_THREAD_DESC_SIZE) - 16; |
---|
| 904 | |
---|
| 905 | // Each cores initialise stack pointer, |
---|
[6] | 906 | // reset the BEV bit in status register, |
---|
| 907 | // register "boot_info" argument in a0, |
---|
| 908 | // and jump to kernel_entry. |
---|
| 909 | asm volatile( "mfc0 $27, $12 \n" |
---|
| 910 | "lui $26, 0xFFBF \n" |
---|
| 911 | "ori $26, $26, 0xFFFF \n" |
---|
| 912 | "and $27, $27, $26 \n" |
---|
| 913 | "mtc0 $27, $12 \n" |
---|
| 914 | "move $4, %0 \n" |
---|
| 915 | "move $29, %1 \n" |
---|
| 916 | "jr %2 \n" |
---|
[13] | 917 | :: "r"(boot_info) , "r"(sp) , "r"(kernel_entry) ); |
---|
[6] | 918 | |
---|
[1] | 919 | } // boot_loader() |
---|