source: trunk/tools/bootloader_tsar/boot.c @ 9

Last change on this file since 9 was 6, checked in by alain, 8 years ago

Modify the boot_info_t struct to describe external peripherals in all clusters.

File size: 36.3 KB
RevLine 
[6]1/*
2 * boot.c - TSAR bootloader implementation.
3 *
4 * Authors :   Alain Greiner / Vu Son  (2016)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
[1]24/****************************************************************************
[6]25 * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. *
[1]26 *                                                                          *
27 * It supports clusterised shared memory multi-processor architectures,     *
28 * where each processor is identified by a composite index [cxy,lid],       *
29 * with one physical memory bank per cluster.                               *
30 *                                                                          *
31 * The 'boot.elf' file (containing the boot-loader binary code) is stored   *
32 * on disk and is loaded into memory by bscpu (whose index is [0,0]),       *
33 * executing the generic preloader.                                         *
34 *                                                                          *
35 * 1) The boot-loader first phase is executed by bscpu only, while          *
36 *    all other cores are waiting in the preloader.                         *
37 *    It does the following tasks:                                          *
38 *      - load into the memory bank of cluster (0,0) the 'arch_info.bin'    *
39 *        file (containing the hardware architecture description) and the   *
40 *        'kernel.elf' file, at temporary locations,                        *   
41 *      - initializes the 'boot_info_t' structure in cluster(0,0)           *
42 *        (there is 1 'boot_info_t' per cluster), which contains both       *
43 *        global and cluster specific information that will be used for     *
44 *        kernel initialisation.                                            *
45 *      - activate CP0s in all other clusters, using IPIs.                  *
46 *      - wait completion reports from CP0s on a global barrier.            *
47 *                                                                          *
48 * 2) The boot-loader second phase is then executed in parallel by all      *
49 *    CP0s (other than bscpu). Each CP0 performs the following tasks:       *
50 *      - copies into the memory bank of the local cluster the 'boot.elf',  *
51 *        the 'arch_info.bin' (at the same addresses as the 'boot.elf' and  *
52 *        the 'arch_info.bin' in the memory bank of the cluster(0,0), and   *
53 *        the kernel image (at address 0x0),                                *
54 *      - initializes the 'boot_info_t' structure of the local cluster,     *
55 *      - activate all other cores in the same cluster (CPi).               *
56 *      - wait local CPi completion reports on a local barrier.             *
57 *      - report completion to bscpu on the global barrier.                 *
58 *                                                                          *
59 * 3) The boot-loader third phase is executed in parallel by all cores.     *
60 *    After passing the global barrier the bscpu:                           *
61 *      - activates the CPi of cluster(0,0),                                *
62 *      - blocks on the local barrier waiting for all local CPi to report   *
63 *        completion on the local barrier,                                  *
64 *      - moves the local kernel image from the temporary location to the   *
65 *        address 0x0, (erasing the preloader code).                        *
66 *                                                                          *
67 * 4) All cores have finished the boot phase, they jump to the kern_init()  *
68 *    function (maybe not at the same time).                                *
69 ****************************************************************************/
70
71#include <elf-types.h>
[6]72#include <hal_types.h>
[1]73
74#include <almos_config.h>
75#include <boot_config.h>
76
77#include <arch_info.h>
78#include <boot_info.h>
79
80#include <boot_utils.h>
81#include <boot_fat32.h>
82#include <boot_bdv_driver.h>
83#include <boot_hba_driver.h>
84#include <boot_tty_driver.h>
85
[6]86/*****************************************************************************
87 *                                 Macros.                             
[1]88 ****************************************************************************/
89
90#define PAGE_ROUND_DOWN(x)  ((x) & (~PPM_PAGE_SIZE -1))
91#define PAGE_ROUND_UP(x)    (((x) + PPM_PAGE_SIZE-1) &   \
92                            (~(PPM_PAGE_SIZE-1)))
93
[6]94/*****************************************************************************
95 *                             Global variables.                           
[1]96 ****************************************************************************/
97
98// synchronization variables.
99
[6]100volatile boot_remote_spinlock_t tty0_lock;       // protect TTY0 access
101volatile boot_remote_barrier_t  global_barrier;  // synchronize CP0 cores
102volatile boot_remote_barrier_t  local_barrier;   // synchronize cores in one cluster
103uint32_t                        active_cp0s_nr;  // number of expected CP0s
104 
105// kernel segments layout variables
[1]106
[6]107uint32_t                        seg_kcode_base;  // kcode segment base address
108uint32_t                        seg_kcode_size;  // kcode segment size (bytes)
109uint32_t                        seg_kdata_base;  // kdata segment base address
110uint32_t                        seg_kdata_size;  // kdata segment size (bytes)
111uint32_t                        kernel_entry;    // kernel entry point
[1]112
[6]113// address used by the WTI to activate remote CP0s
[1]114
[6]115extern void                     boot_entry();    // boot_loader entry point
[1]116
[6]117/*********************************************************************************
118 * This function returns the printable string for each device type
119 ********************************************************************************/
[1]120char * device_type_str( uint32_t dev_type )
121{
[6]122    if     ( dev_type == DEV_TYPE_RAM_SCL ) return "RAM_SCL";
123    else if( dev_type == DEV_TYPE_ROM_SCL ) return "ROM_SCL";
124    else if( dev_type == DEV_TYPE_FBF_SCL ) return "FBF_SCL";
125    else if( dev_type == DEV_TYPE_IOB_TSR ) return "IOB_TSR";
[1]126    else if( dev_type == DEV_TYPE_IOC_BDV ) return "IOC_BDV";
127    else if( dev_type == DEV_TYPE_IOC_HBA ) return "IOC_HBA";
128    else if( dev_type == DEV_TYPE_IOC_SDC ) return "IOC_SDC";
129    else if( dev_type == DEV_TYPE_IOC_SPI ) return "IOC_SPI";
130    else if( dev_type == DEV_TYPE_IOC_RDK ) return "IOC_RDK";
[6]131    else if( dev_type == DEV_TYPE_MMC_TSR ) return "MMC_TSR";
132    else if( dev_type == DEV_TYPE_DMA_SCL ) return "DMA_SCL";
133    else if( dev_type == DEV_TYPE_NIC_CBF ) return "NIC_CBF";
134    else if( dev_type == DEV_TYPE_TIM_SCL ) return "TIM_SCL";
135    else if( dev_type == DEV_TYPE_TXT_TTY ) return "TXT_TTY";
136    else if( dev_type == DEV_TYPE_ICU_XCU ) return "ICU_XCU";
137    else if( dev_type == DEV_TYPE_PIC_TSR ) return "PIC_TSR";
138    else                                    return "undefined";
[1]139}
140
[6]141/************************************************************************************
[1]142 * This function loads the arch_info.bin file into the boot cluster memory.
[6]143 ***********************************************************************************/
[1]144static void boot_archinfo_load()
145{
146    archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; 
147   
148    // Load file into memory
149    if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE))
150    {
151        boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): "
152                    "<%s> file not found\n",
153                    ARCHINFO_PATHNAME);
154        boot_exit();
155    }
156
157    if (header->signature != ARCHINFO_SIGNATURE)
158    {
159        boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): "
160                    "<%s> file signature should be %x\n",
161                    ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE);
162        boot_exit();
163    }
164
165#if DEBUG_BOOT_INFO
[6]166boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n",
167            __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE );
[1]168#endif
169
170} // boot_archinfo_load()
171
[6]172/**************************************************************************************
173 * This function loads the 'kernel.elf' file into the boot cluster memory buffer,
174 * analyzes it, and places the the two seg_kcode & seg_kdata segments at their final
175 * physical adresses (just after the preloader zone).       
176 * It set the global variables defining the kernel layout.
177 *************************************************************************************/
[1]178static void boot_kernel_load()
179{
[6]180    Elf32_Ehdr * elf_header;      // pointer on kernel.elf header. 
181    Elf32_Phdr * program_header;  // pointer on kernel.elf program header.
182    uint32_t     phdr_offset;     // program header offset in kernel.elf file.
183    uint32_t     segments_nb;     // number of segments in kernel.elf file.
184    uint32_t     seg_src_addr;    // segment address in kernel.elf file (source).
185    uint32_t     seg_paddr;       // segment local physical address of segment
186    uint32_t     seg_offset;      // segment offset in kernel.elf file
187    uint32_t     seg_filesz;      // segment size (bytes) in kernel.elf file
188    uint32_t     seg_memsz;       // segment size (bytes) in memory image.
189    bool_t       kcode_found;     // kcode segment found.
190    bool_t       kdata_found;     // kdata segment found.
191    uint32_t     seg_id;          // iterator for segments loop.
[1]192
[6]193#if DEBUG_BOOT_ELF
194boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n",
195            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
196#endif
[1]197
[6]198    // Load kernel.elf file into memory buffer
199    if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) )
[1]200    {
[6]201        boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n",
[1]202                    KERNEL_PATHNAME);
203        boot_exit();
204    }
205
[6]206    // get pointer to kernel.elf header 
[1]207    elf_header = (Elf32_Ehdr*)KERN_BASE;
208
[6]209    // check signature
[1]210    if ((elf_header->e_ident[EI_MAG0] != ELFMAG0)   ||
211        (elf_header->e_ident[EI_MAG1] != ELFMAG1)   ||
212        (elf_header->e_ident[EI_MAG2] != ELFMAG2)   ||
213        (elf_header->e_ident[EI_MAG3] != ELFMAG3))
214    {
215        boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): "
216                    "<%s> is not an ELF file\n",
217                    KERNEL_PATHNAME);
218        boot_exit();
219    }
220
[6]221    // Get program header table offset and number of segments
[1]222    phdr_offset     = elf_header->e_phoff;
223    segments_nb     = elf_header->e_phnum;
224
[6]225    // Get program header table pointer
[1]226    program_header  = (Elf32_Phdr*)(KERN_BASE + phdr_offset);
227
[6]228    // loop on segments
229    kcode_found = false;
230    kdata_found = false;
[1]231    for (seg_id = 0; seg_id < segments_nb; seg_id++) 
232    {
[6]233        if (program_header[seg_id].p_type == PT_LOAD)   // Found one loadable segment
[1]234        {
[6]235            // Get segment attributes.
[1]236            seg_paddr    = program_header[seg_id].p_paddr;   
237            seg_offset   = program_header[seg_id].p_offset;
238            seg_filesz   = program_header[seg_id].p_filesz;
239            seg_memsz    = program_header[seg_id].p_memsz;
240
[6]241            // get segment base address in buffer
[1]242            seg_src_addr = (uint32_t)KERN_BASE + seg_offset;
243
[6]244            // Load segment to its final physical memory address
245            boot_memcpy( (void*)seg_paddr, 
246                         (void*)seg_src_addr, 
247                         seg_filesz );
248
249#if DEBUG_BOOT_ELF
250boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n"
251            "   base = %x / size = %x\n",
252            __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz );
253#endif
254
[1]255            // Fill remaining memory with zero if (filesz < memsz).
[6]256            if( seg_memsz < seg_filesz )
[1]257            {
[6]258                boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz);
[1]259            }
260
[6]261            // Note: we suppose that the 'kernel.elf' file contains only 2
262            // loadable segments ktext & kdata and that the main
263            // difference between these two is the WRITE permission: ktext
264            // contains read-only instructions and read_only data,
265            // while kdata contains writable data.
266
267            if ((program_header[seg_id].p_flags & PF_W) == 0)  // kcode segment
[1]268            {
[6]269                if( kcode_found )
270                {
271                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
272                                "   two loadable kcode segments found\n",
273                                __FUNCTION__ , KERNEL_PATHNAME );
274                    boot_exit();
275                } 
276
277                kcode_found     = true;
278                seg_kcode_base = seg_paddr;
279                seg_kcode_size = seg_memsz;
[1]280            }
[6]281            else                                               // kdata segment
282            {
283                if( kdata_found )
284                {
285                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
286                                "   two loadable kdata segments found\n",
287                                __FUNCTION__ , KERNEL_PATHNAME );
288                    boot_exit();
289                } 
290
291                kdata_found     = true;
292                seg_kdata_base = seg_paddr;
293                seg_kdata_size = seg_memsz;
294            }
[1]295        }
296    }
297
[6]298    // check kcode & kdata segments found
299    if( kcode_found == false )
300    {
301        boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
302                    "   kcode segment not found\n",
303                    __FUNCTION__ , KERNEL_PATHNAME );
304        boot_exit();
305    }
306    if( kdata_found == false )
307    {
308        boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
309                    "   kdata segment not found\n",
310                    __FUNCTION__ , KERNEL_PATHNAME );
311        boot_exit();
312    }
313
314    // set entry point
[1]315    kernel_entry = (uint32_t)elf_header->e_entry;
316
[6]317#if DEBUG_BOOT_ELF
318boot_printf("\n[BOOT INFO] %s successfully completed for file %s at cycle %d\n",
319            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
320#endif
321
[1]322} // boot_kernel_load()
323
[6]324/*************************************************************************************
325 * This function initializes the  boot_info_t structure for a given cluster.
326 * @ boot_info  : pointer to local boot_info_t structure 
327 * @ cxy        : cluster identifier                   
328 ************************************************************************************/
[1]329static void boot_info_init( boot_info_t * boot_info,
330                            cxy_t         cxy )
331{
[6]332    archinfo_header_t  * header;
[1]333    archinfo_core_t    * core_base;     
334    archinfo_cluster_t * cluster_base; 
335    archinfo_device_t  * device_base;
336    archinfo_irq_t     * irq_base; 
337
338    archinfo_cluster_t * cluster; 
[6]339    archinfo_cluster_t * my_cluster = NULL;   // target cluster
340    archinfo_cluster_t * io_cluster = NULL;   // cluster containing ext. peripherals
341
[1]342    archinfo_core_t    * core;
343    uint32_t             core_id; 
344    archinfo_device_t  * device;
345    uint32_t             device_id;
346    archinfo_irq_t     * irq; 
347    uint32_t             irq_id;
348 
349    boot_device_t      * boot_dev; 
350
[6]351#if DEBUG_BOOT_INFO
352boot_printf("\n[BOOT INFO] %s : enter for cluster %x at cycle %d\n",
353            __FUNCTION__ , cxy , boot_get_proctime() );
354#endif
[1]355
[6]356    // get pointer on ARCHINFO header  and on the four arch_info arrays
357    header       = (archinfo_header_t*)ARCHINFO_BASE;
358    core_base    = archinfo_get_core_base   (header);
359    cluster_base = archinfo_get_cluster_base(header);
360    device_base  = archinfo_get_device_base (header);
361    irq_base     = archinfo_get_irq_base    (header);
362
[1]363    // Initialize global platform parameters
364    boot_info->x_size       = header->x_size;
365    boot_info->y_size       = header->y_size;
366    boot_info->x_width      = header->x_width;
367    boot_info->y_width      = header->y_width;
368    boot_info->paddr_width  = header->paddr_width;
369    boot_info->io_cxy       = header->io_cxy;
370
371    // Initialize kernel segments
[6]372    boot_info->kernel_code_start = seg_kcode_base;
373    boot_info->kernel_code_end   = seg_kcode_base + seg_kcode_size;
374    boot_info->kernel_data_start = seg_kdata_base;
375    boot_info->kernel_data_end   = seg_kdata_base + seg_kdata_size;
[1]376
[6]377    // loop on arch_info clusters to get relevant pointers
[1]378    for (cluster =  cluster_base;
379         cluster < &cluster_base[header->x_size * header->y_size];
380         cluster++)
381    {
[6]382        if( cluster->cxy  == cxy )            my_cluster = cluster;
383        if( cluster->cxy  == header->io_cxy ) io_cluster = cluster;
384    }
[1]385
[6]386    if( my_cluster == NULL ) 
387    {
388        boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n",
389                    __FUNCTION__ , cxy );
390        boot_exit();
391    }
[1]392
[6]393    if( io_cluster == NULL ) 
394    {
395        boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n",
396                    __FUNCTION__ , header->io_cxy );
397        boot_exit();
398    }
399
400    // loop on all arch-info peripherals in IO_cluster,
401    // to initialize the boot_info array of external peripherals
402
[1]403#if DEBUG_BOOT_INFO
[6]404boot_printf("\n[BOOT INFO] %s : External peripherals\n", __FUNCTION__ );
[1]405#endif
[6]406
407    device_id = 0;
408    for (device = &device_base[io_cluster->device_offset];
409         device < &device_base[io_cluster->device_offset + io_cluster->devices];
410         device++ )
411    {
412        // initialise one entry for each external peripheral
413        if( (device->type != DEV_TYPE_RAM_SCL) &&
414            (device->type != DEV_TYPE_ICU_XCU) &&
415            (device->type != DEV_TYPE_MMC_TSR) &&
416            (device->type != DEV_TYPE_DMA_SCL) ) 
[1]417        {
[6]418            boot_dev = &boot_info->ext_dev[device_id];
[1]419
[6]420            boot_dev->type     = device->type;
421            boot_dev->base     = device->base;
422            boot_dev->size     = device->size;
423            boot_dev->channels = device->channels;
424            boot_dev->param0   = device->arg0;   
425            boot_dev->param1   = device->arg1;   
426            boot_dev->param2   = device->arg2;   
427            boot_dev->param3   = device->arg3;   
428            boot_dev->irqs     = device->irqs;   
429
430            device_id++;
431        }
432
[1]433#if DEBUG_BOOT_INFO
[6]434boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
435            device_type_str( device->type ) , device->base , device->size ,
436            device->channels , device->irqs );   
[1]437#endif
[6]438   
439        // Initialize array of irq descriptors for PIC
440        if (device->type == DEV_TYPE_PIC_TSR) 
441        {
442            for (irq_id = 0; irq_id < CONFIG_MAX_IRQS_PER_PIC; irq_id++)
443            {
444                boot_dev->irq[irq_id].valid  = 0;
445            }
[1]446
[6]447            for (irq = &irq_base[device->irq_offset];
448                 irq < &irq_base[device->irq_offset + device->irqs];
449                 irq++)
450            {
451                boot_dev->irq[irq->port].valid    = 1;
452                boot_dev->irq[irq->port].dev_type = irq->dev_type;
453                boot_dev->irq[irq->port].channel  = irq->channel;
454                boot_dev->irq[irq->port].is_rx    = irq->is_rx;
455
456#if DEBUG_BOOT_INFO
457boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
458            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
459#endif
460            }
[1]461        }
[6]462    }
[1]463
[6]464    // initialize number of external peripherals
465    boot_info->ext_dev_nr = device_id;
466
467    // Initialize cluster specific resources
468    boot_info->cxy  = my_cluster->cxy;
469
470#if DEBUG_BOOT_INFO
471boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ );
472#endif
473
474    // Initialize array of core descriptors
475    core_id = 0;
476    for (core = &core_base[my_cluster->core_offset];
477         core < &core_base[my_cluster->core_offset + my_cluster->cores];
478         core++ )
479    {
480        boot_info->core[core_id].gid = (gid_t)core->gid;
481        boot_info->core[core_id].lid = (lid_t)core->lid; 
482        boot_info->core[core_id].cxy = (cxy_t)core->cxy;
483
484#if DEBUG_BOOT_INFO
485boot_printf("  - core_gid = %x : cxy = %x / lid = %d\n", 
486            core->gid , core->cxy , core->lid );
487#endif
488        core_id++;
489    }
490
491    // Initialize number of cores in my_cluster
492    boot_info->cores_nr = core_id;
493
494    // loop on all peripherals in my_cluster to initialise
495    // boot_info array of internal peripherals in my_cluster
496
497#if DEBUG_BOOT_INFO
498boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", __FUNCTION__ );
499#endif
500
501    device_id = 0;
502    for (device = &device_base[my_cluster->device_offset];
503         device < &device_base[my_cluster->device_offset + my_cluster->devices];
504         device++ )
505    {
506        // initialise one entry for each internal peripheral
507        if( (device->type == DEV_TYPE_RAM_SCL) ||
508            (device->type == DEV_TYPE_ICU_XCU) ||
509            (device->type == DEV_TYPE_MMC_TSR) ||
510            (device->type == DEV_TYPE_DMA_SCL) ) 
[1]511        {
[6]512            boot_dev = &boot_info->int_dev[device_id];
[1]513
[6]514            boot_dev->type     = device->type;
515            boot_dev->base     = device->base;
516            boot_dev->size     = device->size;
517            boot_dev->channels = device->channels;
518            boot_dev->param0   = device->arg0;   
519            boot_dev->param1   = device->arg1;   
520            boot_dev->param2   = device->arg2;   
521            boot_dev->param3   = device->arg3;   
522            boot_dev->irqs     = device->irqs; 
523   
524            device_id++;
525        }
[1]526
527#if DEBUG_BOOT_INFO
[6]528boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
[1]529            device_type_str( device->type ) , device->base , device->size ,
530            device->channels , device->irqs );   
531#endif
532
[6]533        // Initialize information about physical memory in cluster
534        if (device->type == DEV_TYPE_RAM_SCL)
535        {
536            // Compute total number of physical memory pages in cluster
537            boot_info->pages_nr = device->size >> CONFIG_PPM_PAGE_SHIFT;
538
539            // Get the last address allocated for the kernel segments
540            uint32_t end;
541            if( boot_info->kernel_code_end > boot_info->kernel_data_end )
[1]542            {
[6]543                end = boot_info->kernel_code_end;
[1]544            }
[6]545            else
[1]546            {
[6]547                end = boot_info->kernel_data_end;
548            }
549               
550            // Compute the number of pages allocated for the kernel.
551            if( (end & CONFIG_PPM_PAGE_MASK) == 0 )
552            {
553                boot_info->pages_offset = end >> CONFIG_PPM_PAGE_SHIFT;
554            }
555            else
556            {
557                boot_info->pages_offset = (end >> CONFIG_PPM_PAGE_SHIFT) + 1;
558            }
[1]559
560#if DEBUG_BOOT_INFO
[6]561boot_printf("    . physical memory : %x pages / first free page = %x\n",
562            boot_info->pages_nr , boot_info->pages_offset );
[1]563#endif
[6]564        }
565           
566        // Initialize array of irq descriptors for XCU
567        if (device->type == DEV_TYPE_ICU_XCU) 
568        {
569            for (irq_id = 0; irq_id < CONFIG_MAX_HWIS_PER_ICU; irq_id++)
570            {
571                boot_dev->irq[irq_id].valid  = 0;
[1]572            }
573
[6]574            for (irq = &irq_base[device->irq_offset];
575                 irq < &irq_base[device->irq_offset + device->irqs];
576                 irq++)
[1]577            {
[6]578                boot_dev->irq[irq->port].valid    = 1;
579                boot_dev->irq[irq->port].dev_type = irq->dev_type;
580                boot_dev->irq[irq->port].channel  = irq->channel;
581                boot_dev->irq[irq->port].is_rx    = irq->is_rx;
[1]582
583#if DEBUG_BOOT_INFO
584boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
585            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
586#endif
587
588            }
589        }
[6]590    }
[1]591
[6]592    // initialize number of internal peripherals in my_cluster
593    boot_info->int_dev_nr = device_id;
[1]594
[6]595    // set boot_info signature
596    boot_info->signature = BOOT_INFO_SIGNATURE;
597
[1]598} // boot_info_init()
599
[6]600/***********************************************************************************
601 * This function check the local boot_info_t structure for a given core.
602 * @ boot_info  : pointer to local 'boot_info_t' structure to be checked.
603 * @ lid        : core local identifier, index the core descriptor table.
604 **********************************************************************************/
[1]605static void boot_check_core( boot_info_t * boot_info, 
606                             lid_t         lid)
607{
608    gid_t         gid;        // global hardware identifier of this core
609    boot_core_t * this;       // BOOT_INFO core descriptor of this core. 
610
611    // Get core hardware identifier
612    gid = (gid_t)boot_get_procid();
613
614    // get pointer on core descriptor
615    this = &boot_info->core[lid];
616
617    if ( (this->gid != gid) ||  (this->cxy != boot_info->cxy) )
618    {
619        boot_printf("\n[BOOT ERROR] in boot_check_core() :\n"
620                    " - boot_info cxy = %x\n"
621                    " - boot_info lid = %d\n"
622                    " - boot_info gid = %x\n"
623                    " - actual    gid = %x\n",
624                    this->cxy , this->lid , this->gid , gid );
625        boot_exit();
626    }
627
628} // boot_check_core()
629
[6]630/*********************************************************************************
631 * This function is called by CP0 in cluster(0,0) to activate all other CP0s.
[1]632 * It returns the number of CP0s actually activated.
[6]633 ********************************************************************************/
634static uint32_t boot_wake_all_cp0s()
[1]635{
[6]636    archinfo_header_t*  header;         // Pointer on ARCHINFO header
637    archinfo_cluster_t* cluster_base;   // Pointer on ARCHINFO clusters base
638    archinfo_cluster_t* cluster;        // Iterator for loop on clusters
639    archinfo_device_t*  device_base;    // Pointer on ARCHINFO devices base
640    archinfo_device_t*  device;         // Iterator for loop on devices
641    uint32_t            cp0_nb = 0;     // CP0s counter
[1]642
643    header       = (archinfo_header_t*)ARCHINFO_BASE;
644    cluster_base = archinfo_get_cluster_base(header);
645    device_base  = archinfo_get_device_base (header); 
646
647    // loop on all clusters
648    for (cluster = cluster_base;
649         cluster < &cluster_base[header->x_size * header->y_size];
650         cluster++)
651    {
652        // Skip boot cluster.
653        if (cluster->cxy == BOOT_CORE_CXY)
654            continue;
655           
656        // Skip clusters without core (thus without CP0).
657        if (cluster->cores == 0)
658            continue;
659
660        // Skip clusters without device (thus without XICU).
661        if (cluster->devices == 0)
662            continue;
663
[6]664        // search XICU device associated to CP0, and send a WTI to activate it
[1]665        for (device = &device_base[cluster->device_offset];
666             device < &device_base[cluster->device_offset + cluster->devices];
667             device++)
668        {
[6]669            if (device->type == DEV_TYPE_ICU_XCU)
[1]670            {
[6]671
672#if DEBUG_BOOT_WAKUP
673boot_printf("\n[BOOT] core[%x][0] activated at cycle %d\n",
674            cluster->cxy , boot_get_proctime );
675#endif
676
[1]677                boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry);
678                cp0_nb++;
679            }
680        }
681    }
682    return cp0_nb;
683
684} // boot_wake_cp0()
685
[6]686/*********************************************************************************
687 * This function is called by all CP0 to activate all local CPi cores.
688 * @ boot_info  : pointer to local 'boot_info_t' structure, used to find
689 *                the XICU device associated with local CPi base addresses.
690 *********************************************************************************/
691static void boot_wake_local_cores(boot_info_t * boot_info)
[1]692{
[6]693    boot_device_t *  device;         // Iterator on devices
694    unsigned int     core_id;        // Iterator on cores
[1]695
696    // loop on devices to find XCU
[6]697    for (device = &boot_info->int_dev[0];
698         device < &boot_info->int_dev[boot_info->int_dev_nr];
[1]699         device++)
700    {
[6]701        if (device->type == DEV_TYPE_ICU_XCU)
[1]702        {
703            // loop on cores
704            for (core_id = 1; core_id < boot_info->cores_nr; core_id++)
[6]705            {
706
707#if DEBUG_BOOT_WAKUP
708boot_printf("\n[BOOT] core[%x][%d] activated at cycle %d\n",
709             boot_info->cxy , core_id , boot_get_proctime() );
710#endif
[1]711                boot_remote_sw((xptr_t) (device->base + (core_id << 2)),
712                               (uint32_t)boot_entry); 
[6]713            }
[1]714        }
715    }
716} // boot_wake_local_cores()
717
718
[6]719/*********************************************************************************
[1]720 * This main function of the boot-loader is called by the  boot_entry() 
721 * function, and executed by all cores.
722 * The arguments values are computed by the boot_entry code.
[6]723 * @ lid    : core local identifier,
[1]724 * @ cxy    : cluster identifier,
[6]725 *********************************************************************************/
[1]726void boot_loader( lid_t lid, 
727                  cxy_t cxy )
728{
[6]729    boot_info_t * boot_info;       // pointer on local boot_info_t structure
[1]730
731    if (lid == 0) 
732    {
[6]733        /****************************************************
734         * PHASE A : only CP0 in boot cluster executes it
735         ***************************************************/
[1]736        if (cxy == BOOT_CORE_CXY)
737        {
[6]738            boot_printf("\n[BOOT] core[%x][%d] enters at cycle %d\n",
739                        cxy , lid , boot_get_proctime() );
[1]740
741            // Initialize IOC driver
742            if      (USE_IOC_BDV) boot_bdv_init();
743            else if (USE_IOC_HBA) boot_hba_init();
[6]744            // else if (USE_IOC_SDC) boot_sdc_init();
745            // else if (USE_IOC_SPI) boot_spi_init();
[1]746            else if (!USE_IOC_RDK)
747            {
[6]748                boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n");
[1]749                boot_exit();
750            }
751
[6]752            // Initialize FAT32.
[1]753            boot_fat32_init();
754
[6]755            // Load the 'kernel.elf' file into memory from IOC, and set   
756            // the global variables defining the kernel layout     
757            boot_kernel_load();
758
759            boot_printf("\n[BOOT] core[%x][%d] loaded kernel at cycle %d\n",
760                        cxy , lid , boot_get_proctime() );
761
[1]762            // Load the arch_info.bin file into memory.
763            boot_archinfo_load();
764
[6]765            // Get local boot_info_t structure base address.
[1]766            // It is the first structure in the .kdata segment.
[6]767            boot_info = (boot_info_t *)seg_kdata_base;
[1]768
[6]769            // Initialize local boot_info_t structure.
770            boot_info_init( boot_info , cxy );
771
772            // check boot_info signature
[1]773            if (boot_info->signature != BOOT_INFO_SIGNATURE)
774            {
[6]775                boot_printf("\n[BOOT ERROR] in %s reported by core[%x][%d]\n"
776                            "  illegal boot_info signature / should be %x\n",
777                            __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE );
[1]778                boot_exit();
779            }
780
[6]781            boot_printf("\n[BOOT] core[%x][%d] loaded boot_info at cycle %d\n",
782                        cxy , lid , boot_get_proctime() );
[1]783
784            // Check core information.
785            boot_check_core(boot_info, lid);
786
[6]787            // Activate other CP0s / get number of active CP0s
788            active_cp0s_nr = boot_wake_all_cp0s() + 1;
[1]789
[6]790            // Wait until all clusters (i.e all CP0s) ready to enter kernel.
791            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) ,
792                                 active_cp0s_nr );
[1]793
[6]794            // activate other local cores
795            boot_wake_local_cores( boot_info );
[1]796
[6]797            // Wait until all local cores in cluster ready
798            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
799                                 boot_info->cores_nr );
[1]800        }
[6]801        /******************************************************************
802         * PHASE B : all CP0s other than CP0 in boot cluster execute it
803         *****************************************************************/
[1]804        else
805        {
[6]806            // at this point, all INSTRUCTION address extension registers
807            // point on cluster(0,0), but the DATA extension registers point
808            // already on the local cluster to use the local stack.
809            // To access the bootloader global variables we must first copy
810            // the boot code (data and instructions) in the local cluster.
811            boot_remote_memcpy( XPTR( cxy           , BOOT_BASE ),
812                                XPTR( BOOT_CORE_CXY , BOOT_BASE ),
813                                BOOT_MAX_SIZE );
[1]814
[6]815            // from now, it is safe to refer to the boot code global variables
816            boot_printf("\n[BOOT] core[%x][%d] replicated boot code at cycle %d\n",
817                        cxy , lid , boot_get_proctime() );
[1]818
[6]819            // switch to the INSTRUCTION local memory space, to avoid contention.
[1]820            asm volatile("mtc2  %0, $25" :: "r"(cxy));
821
[6]822            // Copy the arch_info.bin file into the local memory.
[1]823            boot_remote_memcpy(XPTR(cxy,           ARCHINFO_BASE),
824                               XPTR(BOOT_CORE_CXY, ARCHINFO_BASE),
[6]825                               ARCHINFO_MAX_SIZE );
[1]826
[6]827            boot_printf("\n[BOOT] core[%x][%d] replicated arch_info at cycle %d\n",
828                        cxy , lid , boot_get_proctime() );
[1]829
[6]830            // Copy the kcode segment into local memory
831            boot_remote_memcpy( XPTR( cxy           , seg_kcode_base ),
832                                XPTR( BOOT_CORE_CXY , seg_kcode_base ),
833                                seg_kcode_size );
[1]834
[6]835            // Copy the kdata segment into local memory
836            boot_remote_memcpy( XPTR( cxy           , seg_kdata_base ),
837                                XPTR( BOOT_CORE_CXY , seg_kdata_base ),
838                                seg_kdata_size );
839
840            boot_printf("\n[BOOT] core[%x][%d] replicated kernel code at cycle %d\n",
841                        cxy , lid , boot_get_proctime() );
842
843            // Get local boot_info_t structure base address.
844            boot_info = (boot_info_t*)seg_kdata_base;
845
[1]846            // Initialize local boot_info_t structure.
[6]847            boot_info_init( boot_info , cxy );
[1]848
849            // Check core information.
[6]850            boot_check_core( boot_info , lid );
[1]851
[6]852            // get number of active clusters from BOOT_CORE cluster
853            uint32_t count = boot_remote_lw( XPTR( BOOT_CORE_CXY , &active_cp0s_nr ) );
[1]854
[6]855            // Wait until all clusters (i.e all CP0s) ready to enter kernel
856            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count );
[1]857
[6]858            // activate other local cores
859            boot_wake_local_cores( boot_info );
860
861            // Wait until all local cores in cluster ready
862            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
863                                 boot_info->cores_nr );
[1]864        }
865    }
866    else
867    {
868        /***************************************************************
[6]869         * PHASE C: all non CP0 cores in all clusters execute it
[1]870         **************************************************************/
871
[6]872        // Switch to the INSTRUCTIONS local memory space
873        // to avoid contention at the boot cluster.
874        asm volatile("mtc2  %0, $25" :: "r"(cxy));
[1]875
[6]876        // Get local boot_info_t structure base address.
877        boot_info = (boot_info_t *)seg_kdata_base;
[1]878
[6]879        // Check core information
880        boot_check_core(boot_info, lid);
[1]881
[6]882        // Wait until all local cores in cluster ready
883        boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr );
[1]884    }
885
[6]886    // Each core compute address of a temporary kernel stack
887    // in the upper part of the local cluster memory...
888    uint32_t stack_ptr = ((boot_info->pages_nr - lid) << 12) - 16;
[1]889
[6]890    // All cores initialise stack pointer,
891    // reset the BEV bit in status register,
892    // register "boot_info" argument in a0,
893    // and jump to kernel_entry.
894    asm volatile( "mfc0  $27,  $12           \n"
895                  "lui   $26,  0xFFBF        \n"
896                  "ori   $26,  $26,  0xFFFF  \n"
897                  "and   $27,  $27,  $26     \n"
898                  "mtc0  $27,  $12           \n" 
899                  "move  $4,   %0            \n"
900                  "move  $29,  %1            \n"
901                  "jr    %2                  \n"
902                  :: "r"(boot_info) , "r"(stack_ptr) , "r"(kernel_entry) );
903
[1]904} // boot_loader()
Note: See TracBrowser for help on using the repository browser.