1 | /**************************************************************************** |
---|
2 | * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. * |
---|
3 | * * |
---|
4 | * It supports clusterised shared memory multi-processor architectures, * |
---|
5 | * where each processor is identified by a composite index [cxy,lid], * |
---|
6 | * with one physical memory bank per cluster. * |
---|
7 | * * |
---|
8 | * The 'boot.elf' file (containing the boot-loader binary code) is stored * |
---|
9 | * on disk and is loaded into memory by bscpu (whose index is [0,0]), * |
---|
10 | * executing the generic preloader. * |
---|
11 | * * |
---|
12 | * 1) The boot-loader first phase is executed by bscpu only, while * |
---|
13 | * all other cores are waiting in the preloader. * |
---|
14 | * It does the following tasks: * |
---|
15 | * - load into the memory bank of cluster (0,0) the 'arch_info.bin' * |
---|
16 | * file (containing the hardware architecture description) and the * |
---|
17 | * 'kernel.elf' file, at temporary locations, * |
---|
18 | * - initializes the 'boot_info_t' structure in cluster(0,0) * |
---|
19 | * (there is 1 'boot_info_t' per cluster), which contains both * |
---|
20 | * global and cluster specific information that will be used for * |
---|
21 | * kernel initialisation. * |
---|
22 | * - activate CP0s in all other clusters, using IPIs. * |
---|
23 | * - wait completion reports from CP0s on a global barrier. * |
---|
24 | * * |
---|
25 | * 2) The boot-loader second phase is then executed in parallel by all * |
---|
26 | * CP0s (other than bscpu). Each CP0 performs the following tasks: * |
---|
27 | * - copies into the memory bank of the local cluster the 'boot.elf', * |
---|
28 | * the 'arch_info.bin' (at the same addresses as the 'boot.elf' and * |
---|
29 | * the 'arch_info.bin' in the memory bank of the cluster(0,0), and * |
---|
30 | * the kernel image (at address 0x0), * |
---|
31 | * - initializes the 'boot_info_t' structure of the local cluster, * |
---|
32 | * - activate all other cores in the same cluster (CPi). * |
---|
33 | * - wait local CPi completion reports on a local barrier. * |
---|
34 | * - report completion to bscpu on the global barrier. * |
---|
35 | * * |
---|
36 | * 3) The boot-loader third phase is executed in parallel by all cores. * |
---|
37 | * After passing the global barrier the bscpu: * |
---|
38 | * - activates the CPi of cluster(0,0), * |
---|
39 | * - blocks on the local barrier waiting for all local CPi to report * |
---|
40 | * completion on the local barrier, * |
---|
41 | * - moves the local kernel image from the temporary location to the * |
---|
42 | * address 0x0, (erasing the preloader code). * |
---|
43 | * * |
---|
44 | * 4) All cores have finished the boot phase, they jump to the kern_init() * |
---|
45 | * function (maybe not at the same time). * |
---|
46 | ****************************************************************************/ |
---|
47 | |
---|
48 | #include <elf-types.h> |
---|
49 | |
---|
50 | #include <almos_config.h> |
---|
51 | #include <boot_config.h> |
---|
52 | |
---|
53 | #include <arch_info.h> |
---|
54 | #include <boot_info.h> |
---|
55 | |
---|
56 | #include <hal_types.h> |
---|
57 | |
---|
58 | #include <boot_utils.h> |
---|
59 | #include <boot_fat32.h> |
---|
60 | #include <boot_bdv_driver.h> |
---|
61 | #include <boot_hba_driver.h> |
---|
62 | #include <boot_tty_driver.h> |
---|
63 | |
---|
64 | /**************************************************************************** |
---|
65 | * Macros. * |
---|
66 | ****************************************************************************/ |
---|
67 | |
---|
68 | #define PAGE_ROUND_DOWN(x) ((x) & (~PPM_PAGE_SIZE -1)) |
---|
69 | #define PAGE_ROUND_UP(x) (((x) + PPM_PAGE_SIZE-1) & \ |
---|
70 | (~(PPM_PAGE_SIZE-1))) |
---|
71 | |
---|
72 | /**************************************************************************** |
---|
73 | * Global variables. * |
---|
74 | ****************************************************************************/ |
---|
75 | |
---|
76 | // synchronization variables. |
---|
77 | volatile boot_barrier_t global_barrier; /* Used by bscpu to synchronize |
---|
78 | with other CP0s cores. */ |
---|
79 | |
---|
80 | volatile uint32_t global_count; /* Number of cores expected in |
---|
81 | global barrier. */ |
---|
82 | |
---|
83 | volatile uint32_t local_barrier; /* Used by CP0 to synchronize |
---|
84 | with local CPi. */ |
---|
85 | |
---|
86 | volatile uint32_t boot_cluster_ready; /* Modified by bscpu to report |
---|
87 | that the boot cluster is |
---|
88 | ready. */ |
---|
89 | |
---|
90 | // kernel image memory layout. |
---|
91 | uint32_t ktext_base; /* ktext segment base address. */ |
---|
92 | uint32_t ktext_end; /* ktext segment end address. */ |
---|
93 | uint32_t kdata_base; /* kdata segment base address. */ |
---|
94 | uint32_t kdata_end; /* kdata segment end address. */ |
---|
95 | |
---|
96 | uint32_t kernel_entry; /* Kernel entry point. */ |
---|
97 | |
---|
98 | // Extern variables. |
---|
99 | extern void boot_entry(); /* boot_loader() function */ |
---|
100 | |
---|
101 | /**************************************************************************** |
---|
102 | * Internal functions. * |
---|
103 | ****************************************************************************/ |
---|
104 | |
---|
105 | char * device_type_str( uint32_t dev_type ) |
---|
106 | { |
---|
107 | if ( dev_type == DEV_TYPE_RAM ) return "RAM"; |
---|
108 | else if( dev_type == DEV_TYPE_DMA ) return "DMA"; |
---|
109 | else if( dev_type == DEV_TYPE_FBF ) return "FBF"; |
---|
110 | else if( dev_type == DEV_TYPE_IOB ) return "IOB"; |
---|
111 | else if( dev_type == DEV_TYPE_IOC_BDV ) return "IOC_BDV"; |
---|
112 | else if( dev_type == DEV_TYPE_IOC_HBA ) return "IOC_HBA"; |
---|
113 | else if( dev_type == DEV_TYPE_IOC_SDC ) return "IOC_SDC"; |
---|
114 | else if( dev_type == DEV_TYPE_IOC_SPI ) return "IOC_SPI"; |
---|
115 | else if( dev_type == DEV_TYPE_IOC_RDK ) return "IOC_RDK"; |
---|
116 | else if( dev_type == DEV_TYPE_MMC ) return "MMC"; |
---|
117 | else if( dev_type == DEV_TYPE_MWR_CPY ) return "MWR_CPY"; |
---|
118 | else if( dev_type == DEV_TYPE_MWR_GCD ) return "MWR_GCD"; |
---|
119 | else if( dev_type == DEV_TYPE_MWR_DCT ) return "MWR_DCT"; |
---|
120 | else if( dev_type == DEV_TYPE_NIC ) return "NIC"; |
---|
121 | else if( dev_type == DEV_TYPE_ROM ) return "ROM"; |
---|
122 | else if( dev_type == DEV_TYPE_SIM ) return "SIM"; |
---|
123 | else if( dev_type == DEV_TYPE_TIM ) return "TIM"; |
---|
124 | else if( dev_type == DEV_TYPE_TTY ) return "TTY"; |
---|
125 | else if( dev_type == DEV_TYPE_XCU ) return "XCU"; |
---|
126 | else if( dev_type == DEV_TYPE_PIC ) return "PIC"; |
---|
127 | else if( dev_type == DEV_TYPE_CMA ) return "CMA"; |
---|
128 | else return "UNDEFINED"; |
---|
129 | } |
---|
130 | |
---|
131 | /**************************************************************************** |
---|
132 | * This function loads the arch_info.bin file into the boot cluster memory. |
---|
133 | ****************************************************************************/ |
---|
134 | static void boot_archinfo_load() |
---|
135 | { |
---|
136 | archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
137 | |
---|
138 | // Load file into memory |
---|
139 | if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE)) |
---|
140 | { |
---|
141 | boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): " |
---|
142 | "<%s> file not found\n", |
---|
143 | ARCHINFO_PATHNAME); |
---|
144 | boot_exit(); |
---|
145 | } |
---|
146 | |
---|
147 | if (header->signature != ARCHINFO_SIGNATURE) |
---|
148 | { |
---|
149 | boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): " |
---|
150 | "<%s> file signature should be %x\n", |
---|
151 | ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE); |
---|
152 | boot_exit(); |
---|
153 | } |
---|
154 | |
---|
155 | #if DEBUG_BOOT_INFO |
---|
156 | boot_printf("\n[BOOT] file %s loaded at %l\n", |
---|
157 | ARCHINFO_PATHNAME , ARCHINFO_BASE ); |
---|
158 | #endif |
---|
159 | |
---|
160 | } // boot_archinfo_load() |
---|
161 | |
---|
162 | /**************************************************************************** |
---|
163 | * This function loads the 'kernel.elf' file into the boot cluster memory * |
---|
164 | * bank, analyzes it then places the kernel image at the temporary physical * |
---|
165 | * memory address KERN_IMG_TMP_BASE since other processors are still * |
---|
166 | * executing the preloader code (which means that the kernel image cannot * |
---|
167 | * be placed now at its final memory location starting at address 0x0. * |
---|
168 | ****************************************************************************/ |
---|
169 | static void boot_kernel_load() |
---|
170 | { |
---|
171 | Elf32_Ehdr* elf_header; /* Pointer on 'kernel.elf' header. */ |
---|
172 | Elf32_Phdr* program_header; /* Pointer on 'kernel.elf' program |
---|
173 | header. */ |
---|
174 | uint32_t phdr_offset; /* Program header offset in |
---|
175 | 'kernel.elf' file. */ |
---|
176 | uint32_t segments_nb; /* Total number of segments in |
---|
177 | 'kernel.elf' file. */ |
---|
178 | |
---|
179 | uint32_t seg_src_addr; /* Segment address in 'kernel.elf' |
---|
180 | file (source). */ |
---|
181 | uint32_t seg_paddr; /* Physical address at which the |
---|
182 | first byte of the segment resides |
---|
183 | in memory. */ |
---|
184 | uint32_t seg_offset; /* Offset from the beginning of |
---|
185 | 'kernel.elf' file to the segment's |
---|
186 | first byte. */ |
---|
187 | uint32_t seg_filesz; /* Segment's number of bytes in |
---|
188 | 'kernel.elf' file. */ |
---|
189 | uint32_t seg_memsz; /* Segment's number of bytes in the |
---|
190 | memory image. */ |
---|
191 | |
---|
192 | uint32_t seg_id; /* Iterator for program header scanning |
---|
193 | loop. */ |
---|
194 | |
---|
195 | /* Loading file into memory. */ |
---|
196 | if (boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE)) |
---|
197 | { |
---|
198 | boot_printf("\n[BOOT ERROR]: boot_kernel_load(): " |
---|
199 | "<%s> file not found\n", |
---|
200 | KERNEL_PATHNAME); |
---|
201 | boot_exit(); |
---|
202 | } |
---|
203 | |
---|
204 | /* |
---|
205 | * Initializing pointer to header which is the first element of the |
---|
206 | * .elf file. |
---|
207 | */ |
---|
208 | elf_header = (Elf32_Ehdr*)KERN_BASE; |
---|
209 | |
---|
210 | /* Signature problem, abort program !!! */ |
---|
211 | if ((elf_header->e_ident[EI_MAG0] != ELFMAG0) || |
---|
212 | (elf_header->e_ident[EI_MAG1] != ELFMAG1) || |
---|
213 | (elf_header->e_ident[EI_MAG2] != ELFMAG2) || |
---|
214 | (elf_header->e_ident[EI_MAG3] != ELFMAG3)) |
---|
215 | { |
---|
216 | boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): " |
---|
217 | "<%s> is not an ELF file\n", |
---|
218 | KERNEL_PATHNAME); |
---|
219 | boot_exit(); |
---|
220 | } |
---|
221 | |
---|
222 | /* Getting the program header table offset and the number of segments. */ |
---|
223 | phdr_offset = elf_header->e_phoff; |
---|
224 | segments_nb = elf_header->e_phnum; |
---|
225 | |
---|
226 | /* Getting the program header table pointer. */ |
---|
227 | program_header = (Elf32_Phdr*)(KERN_BASE + phdr_offset); |
---|
228 | |
---|
229 | /* Looking for loadable segments. */ |
---|
230 | for (seg_id = 0; seg_id < segments_nb; seg_id++) |
---|
231 | { |
---|
232 | // Found one: |
---|
233 | if (program_header[seg_id].p_type == PT_LOAD) |
---|
234 | { |
---|
235 | // Getting its attributes. |
---|
236 | seg_paddr = program_header[seg_id].p_paddr; |
---|
237 | seg_offset = program_header[seg_id].p_offset; |
---|
238 | seg_filesz = program_header[seg_id].p_filesz; |
---|
239 | seg_memsz = program_header[seg_id].p_memsz; |
---|
240 | |
---|
241 | // Load it to its appropriate physical memory address. |
---|
242 | seg_src_addr = (uint32_t)KERN_BASE + seg_offset; |
---|
243 | boot_memcpy((void*)(KERN_IMG_TMP_BASE + seg_paddr), |
---|
244 | (void*)seg_src_addr, |
---|
245 | seg_filesz); |
---|
246 | |
---|
247 | // Fill remaining memory with zero if (filesz < memsz). |
---|
248 | boot_memset((void*)(KERN_IMG_TMP_BASE + seg_paddr + seg_filesz), |
---|
249 | 0, |
---|
250 | seg_memsz - seg_filesz); |
---|
251 | |
---|
252 | /* |
---|
253 | * Note: we suppose that the 'kernel.elf' file contains only 2 |
---|
254 | * loadable segments ktext + kdata and that the main |
---|
255 | * difference between these two is the WRITE permission: ktext |
---|
256 | * contains read-only instructions and read_only data, |
---|
257 | * while kdata contains writable data. |
---|
258 | */ |
---|
259 | |
---|
260 | // Get ktext segment base and end addresses. |
---|
261 | if ((program_header[seg_id].p_flags & PF_W) == 0) |
---|
262 | { |
---|
263 | ktext_base = seg_paddr; |
---|
264 | ktext_end = seg_paddr + seg_memsz; |
---|
265 | } |
---|
266 | |
---|
267 | // Get kdata segment base and end addresses. |
---|
268 | else |
---|
269 | { |
---|
270 | kdata_base = seg_paddr; |
---|
271 | kdata_end = seg_paddr + seg_memsz; |
---|
272 | } |
---|
273 | } |
---|
274 | } |
---|
275 | |
---|
276 | // Get the entry point for kernel code. |
---|
277 | kernel_entry = (uint32_t)elf_header->e_entry; |
---|
278 | |
---|
279 | } // boot_kernel_load() |
---|
280 | |
---|
281 | /**************************************************************************** |
---|
282 | * This function initializes the local 'boot_info_t' structure. * |
---|
283 | * @ boot_info : pointer to local boot_info_t structure * |
---|
284 | * @ cxy : cluster identifier * |
---|
285 | ****************************************************************************/ |
---|
286 | static void boot_info_init( boot_info_t * boot_info, |
---|
287 | cxy_t cxy ) |
---|
288 | { |
---|
289 | archinfo_header_t * header; |
---|
290 | archinfo_core_t * core_base; |
---|
291 | archinfo_cluster_t * cluster_base; |
---|
292 | archinfo_device_t * device_base; |
---|
293 | archinfo_irq_t * irq_base; |
---|
294 | |
---|
295 | archinfo_cluster_t * cluster; |
---|
296 | archinfo_core_t * core; |
---|
297 | uint32_t core_id; |
---|
298 | archinfo_device_t * device; |
---|
299 | uint32_t device_id; |
---|
300 | archinfo_irq_t * irq; |
---|
301 | uint32_t irq_id; |
---|
302 | |
---|
303 | boot_device_t * boot_dev; |
---|
304 | |
---|
305 | // get pointer on ARCHINFO header |
---|
306 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
307 | |
---|
308 | // Initialize global platform parameters |
---|
309 | boot_info->x_size = header->x_size; |
---|
310 | boot_info->y_size = header->y_size; |
---|
311 | boot_info->x_width = header->x_width; |
---|
312 | boot_info->y_width = header->y_width; |
---|
313 | boot_info->paddr_width = header->paddr_width; |
---|
314 | boot_info->io_cxy = header->io_cxy; |
---|
315 | |
---|
316 | // Initialize kernel segments |
---|
317 | boot_info->kernel_code_start = ktext_base; |
---|
318 | boot_info->kernel_code_end = ktext_end; |
---|
319 | boot_info->kernel_data_start = kdata_base; |
---|
320 | boot_info->kernel_data_end = kdata_end; |
---|
321 | |
---|
322 | // Initialize specific cluster parameter |
---|
323 | core_base = archinfo_get_core_base (header); |
---|
324 | cluster_base = archinfo_get_cluster_base(header); |
---|
325 | device_base = archinfo_get_device_base (header); |
---|
326 | irq_base = archinfo_get_irq_base (header); |
---|
327 | |
---|
328 | // lopp on the clusters to find local cluster descriptor |
---|
329 | for (cluster = cluster_base; |
---|
330 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
331 | cluster++) |
---|
332 | { |
---|
333 | if (cluster->cxy != cxy) continue; |
---|
334 | |
---|
335 | boot_info->cxy = cluster->cxy; |
---|
336 | boot_info->cores_nr = cluster->cores; |
---|
337 | boot_info->devices_nr = cluster->devices; |
---|
338 | |
---|
339 | #if DEBUG_BOOT_INFO |
---|
340 | boot_printf("\n[BOOT] build boot_info for cluster %x : %d cores / %d devices\n", |
---|
341 | cluster->cxy , cluster->cores , cluster->devices ); |
---|
342 | #endif |
---|
343 | // Initialize array of core descriptors |
---|
344 | for (core = &core_base[cluster->core_offset], core_id = 0; |
---|
345 | core < &core_base[cluster->core_offset + cluster->cores]; |
---|
346 | core++, core_id++) |
---|
347 | { |
---|
348 | boot_info->core[core_id].gid = (gid_t)core->gid; |
---|
349 | boot_info->core[core_id].lid = (lid_t)core->lid; |
---|
350 | boot_info->core[core_id].cxy = (cxy_t)core->cxy; |
---|
351 | |
---|
352 | #if DEBUG_BOOT_INFO |
---|
353 | boot_printf(" - core %x : cxy = %x / lid = %d\n", |
---|
354 | core->gid , core->cxy , core->lid ); |
---|
355 | #endif |
---|
356 | |
---|
357 | } |
---|
358 | |
---|
359 | // Initialize array of device descriptors |
---|
360 | for (device = &device_base[cluster->device_offset], device_id = 0; |
---|
361 | device < &device_base[cluster->device_offset + cluster->devices]; |
---|
362 | device++, device_id++) |
---|
363 | { |
---|
364 | boot_dev = &boot_info->dev[device_id]; |
---|
365 | |
---|
366 | boot_dev->type = device->type; |
---|
367 | boot_dev->base = (xptr_t)device->base; |
---|
368 | boot_dev->size = device->size; |
---|
369 | boot_dev->channels = device->channels; |
---|
370 | boot_dev->param0 = device->arg0; |
---|
371 | boot_dev->param1 = device->arg1; |
---|
372 | boot_dev->param2 = device->arg2; |
---|
373 | boot_dev->param3 = device->arg3; |
---|
374 | boot_dev->irqs = device->irqs; |
---|
375 | |
---|
376 | #if DEBUG_BOOT_INFO |
---|
377 | boot_printf(" - device %s : base = %l / size = %d / channels = %d / irqs = %d\n", |
---|
378 | device_type_str( device->type ) , device->base , device->size , |
---|
379 | device->channels , device->irqs ); |
---|
380 | #endif |
---|
381 | |
---|
382 | // Initialize information about physical memory in cluster |
---|
383 | if (device->type == DEV_TYPE_RAM) |
---|
384 | { |
---|
385 | // Compute total number of physical memory pages in cluster |
---|
386 | boot_info->pages_nr = device->size >> CONFIG_PPM_PAGE_SHIFT; |
---|
387 | |
---|
388 | // Get the last address allocated for the kernel segments |
---|
389 | uint32_t end = (ktext_end < kdata_end) ? kdata_end : ktext_end; |
---|
390 | |
---|
391 | // Computing the number of pages allocated for the kernel. |
---|
392 | if( (end & CONFIG_PPM_PAGE_MASK) == 0 ) |
---|
393 | { |
---|
394 | boot_info->pages_offset = end >> CONFIG_PPM_PAGE_SHIFT; |
---|
395 | } |
---|
396 | else |
---|
397 | { |
---|
398 | boot_info->pages_offset = (end >> CONFIG_PPM_PAGE_SHIFT) + 1; |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | // Initialize array of irq descriptors for XCU |
---|
403 | if (device->type == DEV_TYPE_XCU) |
---|
404 | { |
---|
405 | for (irq_id = 0; irq_id < CONFIG_MAX_HWIS_PER_ICU; irq_id++) |
---|
406 | { |
---|
407 | boot_dev->irq[irq_id].valid = 0; |
---|
408 | } |
---|
409 | |
---|
410 | for (irq = &irq_base[device->irq_offset]; |
---|
411 | irq < &irq_base[device->irq_offset + device->irqs]; |
---|
412 | irq++) |
---|
413 | { |
---|
414 | boot_dev->irq[irq->port].valid = 1; |
---|
415 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
416 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
417 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
418 | |
---|
419 | #if DEBUG_BOOT_INFO |
---|
420 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
421 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
422 | #endif |
---|
423 | |
---|
424 | } |
---|
425 | } |
---|
426 | |
---|
427 | // Initialize array of irq descriptors for PIC |
---|
428 | if (device->type == DEV_TYPE_PIC) |
---|
429 | { |
---|
430 | for (irq_id = 0; irq_id < CONFIG_MAX_IRQS_PER_PIC; irq_id++) |
---|
431 | { |
---|
432 | boot_dev->irq[irq_id].valid = 0; |
---|
433 | } |
---|
434 | |
---|
435 | for (irq = &irq_base[device->irq_offset]; |
---|
436 | irq < &irq_base[device->irq_offset + device->irqs]; |
---|
437 | irq++) |
---|
438 | { |
---|
439 | boot_dev->irq[irq->port].valid = 1; |
---|
440 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
441 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
442 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
443 | |
---|
444 | #if DEBUG_BOOT_INFO |
---|
445 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
446 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
447 | #endif |
---|
448 | |
---|
449 | } |
---|
450 | } |
---|
451 | } |
---|
452 | |
---|
453 | #if DEBUG_BOOT_INFO |
---|
454 | boot_printf(" - ram : number of pages = %x / first free page = %x\n", |
---|
455 | boot_info->pages_nr , boot_info->pages_offset ); |
---|
456 | #endif |
---|
457 | |
---|
458 | } |
---|
459 | } // boot_info_init() |
---|
460 | |
---|
461 | /**************************************************************************** |
---|
462 | * This function is executed by all cores in order to check their * |
---|
463 | * local boot_info_t structure. * |
---|
464 | * @ boot_info : pointer to local 'boot_info_t' structure to be checked. * |
---|
465 | * @ lid : core local identifier, index the core descriptor table. * |
---|
466 | ****************************************************************************/ |
---|
467 | static void boot_check_core( boot_info_t * boot_info, |
---|
468 | lid_t lid) |
---|
469 | { |
---|
470 | gid_t gid; // global hardware identifier of this core |
---|
471 | boot_core_t * this; // BOOT_INFO core descriptor of this core. |
---|
472 | |
---|
473 | // Get core hardware identifier |
---|
474 | gid = (gid_t)boot_get_procid(); |
---|
475 | |
---|
476 | // get pointer on core descriptor |
---|
477 | this = &boot_info->core[lid]; |
---|
478 | |
---|
479 | if ( (this->gid != gid) || (this->cxy != boot_info->cxy) ) |
---|
480 | { |
---|
481 | boot_printf("\n[BOOT ERROR] in boot_check_core() :\n" |
---|
482 | " - boot_info cxy = %x\n" |
---|
483 | " - boot_info lid = %d\n" |
---|
484 | " - boot_info gid = %x\n" |
---|
485 | " - actual gid = %x\n", |
---|
486 | this->cxy , this->lid , this->gid , gid ); |
---|
487 | boot_exit(); |
---|
488 | } |
---|
489 | |
---|
490 | } // boot_check_core() |
---|
491 | |
---|
492 | /**************************************************************************** |
---|
493 | * This function is called by the bscpu to activate all other CP0s. * |
---|
494 | * It returns the number of CP0s actually activated. |
---|
495 | ****************************************************************************/ |
---|
496 | static uint32_t boot_wake_cp0() |
---|
497 | { |
---|
498 | archinfo_header_t* header; /* Pointer on ARCHINFO header. */ |
---|
499 | archinfo_cluster_t* cluster_base; /* Pointer on ARCHINFO cluster |
---|
500 | base. */ |
---|
501 | archinfo_cluster_t* cluster; /* Iterator for waking CP0 loop. */ |
---|
502 | archinfo_device_t* device_base; /* Pointer on ARCHINFO peripheral |
---|
503 | device base. */ |
---|
504 | archinfo_device_t* device; /* Iterator for finding XICU device |
---|
505 | loop. */ |
---|
506 | |
---|
507 | uint32_t cp0_nb = 0; /* Number of CP0 woken up. */ |
---|
508 | |
---|
509 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
510 | cluster_base = archinfo_get_cluster_base(header); |
---|
511 | device_base = archinfo_get_device_base (header); |
---|
512 | |
---|
513 | // loop on all clusters |
---|
514 | for (cluster = cluster_base; |
---|
515 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
516 | cluster++) |
---|
517 | { |
---|
518 | // Skip boot cluster. |
---|
519 | if (cluster->cxy == BOOT_CORE_CXY) |
---|
520 | continue; |
---|
521 | |
---|
522 | // Skip clusters without core (thus without CP0). |
---|
523 | if (cluster->cores == 0) |
---|
524 | continue; |
---|
525 | |
---|
526 | // Skip clusters without device (thus without XICU). |
---|
527 | if (cluster->devices == 0) |
---|
528 | continue; |
---|
529 | |
---|
530 | // Look for the XICU device associated to the CP0 of this cluster |
---|
531 | // then send an WTI to it in order to wake it up. |
---|
532 | for (device = &device_base[cluster->device_offset]; |
---|
533 | device < &device_base[cluster->device_offset + cluster->devices]; |
---|
534 | device++) |
---|
535 | { |
---|
536 | if (device->type == DEV_TYPE_XCU) |
---|
537 | { |
---|
538 | boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry); |
---|
539 | cp0_nb++; |
---|
540 | } |
---|
541 | } |
---|
542 | } |
---|
543 | return cp0_nb; |
---|
544 | |
---|
545 | } // boot_wake_cp0() |
---|
546 | |
---|
547 | /**************************************************************************** |
---|
548 | * This function is called by all CP0 to activate all local CPi cores. * |
---|
549 | * @ boot_info : pointer to local 'boot_info_t' structure, used to find * |
---|
550 | * the XICU device associated with local CPi base addresses. * |
---|
551 | ****************************************************************************/ |
---|
552 | static void boot_wake_local_cores(boot_info_t* boot_info) |
---|
553 | { |
---|
554 | boot_device_t* device; // Iterator on devices |
---|
555 | unsigned int core_id; // Iterator on cores |
---|
556 | |
---|
557 | // loop on devices to find XCU |
---|
558 | for (device = &boot_info->dev[0]; |
---|
559 | device < &boot_info->dev[boot_info->devices_nr]; |
---|
560 | device++) |
---|
561 | { |
---|
562 | if (device->type == DEV_TYPE_XCU) |
---|
563 | { |
---|
564 | // loop on cores |
---|
565 | for (core_id = 1; core_id < boot_info->cores_nr; core_id++) |
---|
566 | boot_remote_sw((xptr_t) (device->base + (core_id << 2)), |
---|
567 | (uint32_t)boot_entry); |
---|
568 | } |
---|
569 | } |
---|
570 | } // boot_wake_local_cores() |
---|
571 | |
---|
572 | /**************************************************************************** |
---|
573 | * API functions. * |
---|
574 | ****************************************************************************/ |
---|
575 | |
---|
576 | /**************************************************************************** |
---|
577 | * This main function of the boot-loader is called by the boot_entry() |
---|
578 | * function, and executed by all cores. |
---|
579 | * The arguments values are computed by the boot_entry code. |
---|
580 | * @ lid : core local identifier in its cluster, |
---|
581 | * @ cxy : cluster identifier, |
---|
582 | ****************************************************************************/ |
---|
583 | void boot_loader( lid_t lid, |
---|
584 | cxy_t cxy ) |
---|
585 | { |
---|
586 | boot_info_t * boot_info; // Pointer on local boot_info_t structure |
---|
587 | uint32_t local_count; // Number of cores expected in local barrier */ |
---|
588 | |
---|
589 | if (lid == 0) |
---|
590 | { |
---|
591 | /************************************** |
---|
592 | * PHASE ONE: only bscpu executes it. * |
---|
593 | **************************************/ |
---|
594 | if (cxy == BOOT_CORE_CXY) |
---|
595 | { |
---|
596 | boot_printf("\n[BOOT] Starting on core[%d] in cluster %x at cycle %d\n", |
---|
597 | lid, cxy, boot_get_proctime()); |
---|
598 | |
---|
599 | // Initialize IOC driver |
---|
600 | if (USE_IOC_BDV) boot_bdv_init(); |
---|
601 | else if (USE_IOC_HBA) boot_hba_init(); |
---|
602 | /* |
---|
603 | else if (USE_IOC_SDC) boot_sdc_init(); |
---|
604 | else if (USE_IOC_SPI) boot_spi_init(); |
---|
605 | */ |
---|
606 | else if (!USE_IOC_RDK) |
---|
607 | { |
---|
608 | boot_printf("\n[BOOT ERROR] boot_loader(): " |
---|
609 | "No IOC driver\n" |
---|
610 | ); |
---|
611 | boot_exit(); |
---|
612 | } |
---|
613 | |
---|
614 | // Initialize simplified version of FAT32. |
---|
615 | boot_fat32_init(); |
---|
616 | |
---|
617 | // Load the arch_info.bin file into memory. |
---|
618 | boot_archinfo_load(); |
---|
619 | |
---|
620 | // Load the 'kernel.elf' file into memory. |
---|
621 | boot_kernel_load(); |
---|
622 | |
---|
623 | // Get local 'boot_info_t' structure base address. |
---|
624 | // It is the first structure in the .kdata segment. |
---|
625 | boot_info = (boot_info_t*)(KERN_IMG_TMP_BASE + kdata_base); |
---|
626 | |
---|
627 | // Signature problem, abort program !!! |
---|
628 | if (boot_info->signature != BOOT_INFO_SIGNATURE) |
---|
629 | { |
---|
630 | boot_printf("\n[BOOT] boot_loader(): " |
---|
631 | "boot_info signature should be %x\n", |
---|
632 | BOOT_INFO_SIGNATURE); |
---|
633 | boot_exit(); |
---|
634 | } |
---|
635 | |
---|
636 | // Initialize local 'boot_info_t' structure. |
---|
637 | boot_printf("\n[BOOT] boot_loader(): " |
---|
638 | "Initializing the local boot_info_t structure " |
---|
639 | "at cycle %d\n", |
---|
640 | boot_get_proctime()); |
---|
641 | |
---|
642 | boot_info_init(boot_info, cxy); |
---|
643 | |
---|
644 | // Check core information. |
---|
645 | boot_check_core(boot_info, lid); |
---|
646 | |
---|
647 | // Set the barrier. |
---|
648 | boot_cluster_ready = 0; |
---|
649 | |
---|
650 | // Activate other CP0s |
---|
651 | boot_printf("\n[BOOT] boot_loader(): " |
---|
652 | "Waking other CP0 up at cycle %d\n", |
---|
653 | boot_get_proctime()); |
---|
654 | |
---|
655 | global_count = boot_wake_cp0(); |
---|
656 | |
---|
657 | // Wait until all CP0s ready to enter kernel. |
---|
658 | boot_printf("\n[BOOT] boot_loader(): " |
---|
659 | "Waiting for other %d CP0 at cycle %d\n", |
---|
660 | global_count, boot_get_proctime()); |
---|
661 | |
---|
662 | boot_barrier(XPTR(BOOT_CORE_CXY, &global_barrier), |
---|
663 | global_count); |
---|
664 | |
---|
665 | // activate other local cores of the boot cluster. |
---|
666 | local_barrier = 0; |
---|
667 | boot_printf("\n[BOOT] boot_loader(): " |
---|
668 | "Waking other CPi up at cycle %d\n", |
---|
669 | boot_get_proctime()); |
---|
670 | |
---|
671 | boot_wake_local_cores(boot_info); |
---|
672 | |
---|
673 | // Wait until all other local cores are ready |
---|
674 | boot_printf("\n[BOOT] boot_loader(): " |
---|
675 | "Waiting for other %d CPi at cycle %d\n", |
---|
676 | boot_info->cores_nr - 1, boot_get_proctime()); |
---|
677 | |
---|
678 | local_count = boot_info->cores_nr - 1; |
---|
679 | while (local_barrier != local_count); |
---|
680 | |
---|
681 | // Move the local kernel image at address 0x0 (erase preloader code). |
---|
682 | boot_printf("\n[BOOT] boot_loader(): " |
---|
683 | "Moving the kernel image and erasing the preloader" |
---|
684 | "at cycle %d\n", |
---|
685 | boot_get_proctime()); |
---|
686 | |
---|
687 | // ktext segment. |
---|
688 | boot_memcpy((void*)ktext_base, |
---|
689 | (void*)(KERN_IMG_TMP_BASE + ktext_base), |
---|
690 | ktext_end - ktext_base); |
---|
691 | |
---|
692 | // kdata segment. |
---|
693 | boot_memcpy((void*)kdata_base, |
---|
694 | (void*)(KERN_IMG_TMP_BASE + kdata_base), |
---|
695 | kdata_end - kdata_base); |
---|
696 | |
---|
697 | // activate other local cores. |
---|
698 | boot_cluster_ready = 1; |
---|
699 | boot_printf("\n[BOOT] boot_loader(): " |
---|
700 | "Everything is set, jumping to the kernel " |
---|
701 | "at cycle %d\n", |
---|
702 | boot_get_proctime()); |
---|
703 | } |
---|
704 | /**************************************************** |
---|
705 | * PHASE TWO: all CP0s other than bscpu execute it. * |
---|
706 | ****************************************************/ |
---|
707 | else |
---|
708 | { |
---|
709 | /* |
---|
710 | * Note: at this point, we cannot access the global variables of |
---|
711 | * this boot code since all the address extension registers for |
---|
712 | * DATA are pointing to their local cluster in order to have |
---|
713 | * access to the local stack and execute this C code. |
---|
714 | * However, all the address extension registers for INSTRUCTIONS |
---|
715 | * are still pointing to the boot cluster, thus we can access |
---|
716 | * and call functions defined in the boot code, for example |
---|
717 | * boot_remote_memcpy(). |
---|
718 | */ |
---|
719 | |
---|
720 | // Copy the boot-loader binary code 'boot.elf' into the local memory |
---|
721 | boot_remote_memcpy(XPTR(cxy, BOOT_BASE), |
---|
722 | XPTR(BOOT_CORE_CXY, BOOT_BASE), |
---|
723 | (unsigned int)BOOT_MAX_SIZE); |
---|
724 | |
---|
725 | /* |
---|
726 | * Note: from now on, it is safe to refer to the boot code global variables |
---|
727 | * such as the base address and size of the kernel segments. |
---|
728 | */ |
---|
729 | |
---|
730 | // switch to the INSTRUCTION local memory space, |
---|
731 | // to avoid contention at the boot cluster. |
---|
732 | asm volatile("mtc2 %0, $25" :: "r"(cxy)); |
---|
733 | |
---|
734 | // Copy the 'arch_info.bin' file into the local memory. |
---|
735 | boot_remote_memcpy(XPTR(cxy, ARCHINFO_BASE), |
---|
736 | XPTR(BOOT_CORE_CXY, ARCHINFO_BASE), |
---|
737 | (unsigned int)ARCHINFO_MAX_SIZE); |
---|
738 | |
---|
739 | // Copy the kernel image into local memory at address 0x0. |
---|
740 | // ktext segment. |
---|
741 | boot_remote_memcpy(XPTR(cxy, ktext_base), |
---|
742 | XPTR(BOOT_CORE_CXY, KERN_IMG_TMP_BASE + ktext_base), |
---|
743 | ktext_end - ktext_base); |
---|
744 | // kdata segment. |
---|
745 | boot_remote_memcpy(XPTR(cxy, kdata_base), |
---|
746 | XPTR(BOOT_CORE_CXY, KERN_IMG_TMP_BASE + kdata_base), |
---|
747 | kdata_end - kdata_base); |
---|
748 | |
---|
749 | // Get local 'boot_info_t' structure base address. |
---|
750 | // This is the first structure in the kdata segment. |
---|
751 | boot_info = (boot_info_t*)kdata_base; |
---|
752 | |
---|
753 | // Initialize local boot_info_t structure. |
---|
754 | boot_info_init(boot_info, cxy); |
---|
755 | |
---|
756 | // Check core information. |
---|
757 | boot_check_core(boot_info, lid); |
---|
758 | |
---|
759 | // Activateall other local CPi cores in this cluster. |
---|
760 | local_barrier = 0; |
---|
761 | boot_wake_local_cores(boot_info); |
---|
762 | |
---|
763 | // Waiting until all other local cores ready |
---|
764 | local_count = boot_info->cores_nr - 1; |
---|
765 | while (local_barrier != local_count); |
---|
766 | |
---|
767 | // All cores in this cluster are ready to enter kernel. |
---|
768 | boot_barrier(XPTR(BOOT_CORE_CXY, &global_barrier), |
---|
769 | global_count); |
---|
770 | } |
---|
771 | } |
---|
772 | else |
---|
773 | { |
---|
774 | /*************************************************************** |
---|
775 | * PHASE THREE: all non CP0 cores in all clusters execute it. * |
---|
776 | **************************************************************/ |
---|
777 | |
---|
778 | if (cxy == BOOT_CORE_CXY) // boot cluster only |
---|
779 | { |
---|
780 | // Report to the local CP0 that CPi is ready |
---|
781 | boot_atomic_add((int32_t*)&local_barrier, 1); |
---|
782 | |
---|
783 | // wait completion of kernel image move in boot cluster |
---|
784 | while (boot_cluster_ready != 1); |
---|
785 | |
---|
786 | // Check core information |
---|
787 | boot_info = (boot_info_t*)kdata_base; |
---|
788 | boot_check_core(boot_info, lid); |
---|
789 | } |
---|
790 | else // other clusters |
---|
791 | { |
---|
792 | // Switch to the INSTRUCTIONS local memory space |
---|
793 | // to avoid contention at the boot cluster. |
---|
794 | asm volatile("mtc2 %0, $25" :: "r"(cxy)); |
---|
795 | |
---|
796 | // Report to the local CP0 that CPi is ready |
---|
797 | boot_atomic_add((int32_t*)&local_barrier, 1); |
---|
798 | |
---|
799 | // Check core information |
---|
800 | boot_info = (boot_info_t*)kdata_base; |
---|
801 | boot_check_core(boot_info, lid); |
---|
802 | } |
---|
803 | } |
---|
804 | |
---|
805 | // Jump to the kernel code. |
---|
806 | asm volatile("jr %0" :: "r"(kernel_entry)); |
---|
807 | |
---|
808 | } // boot_loader() |
---|