1 | /* |
---|
2 | * boot.c - TSAR bootloader implementation. |
---|
3 | * |
---|
4 | * Authors : Alain Greiner / Vu Son (2016) |
---|
5 | * |
---|
6 | * Copyright (c) UPMC Sorbonne Universites |
---|
7 | * |
---|
8 | * This file is part of ALMOS-MKH. |
---|
9 | * |
---|
10 | * ALMOS-MKH is free software; you can redistribute it and/or modify it |
---|
11 | * under the terms of the GNU General Public License as published by |
---|
12 | * the Free Software Foundation; version 2.0 of the License. |
---|
13 | * |
---|
14 | * ALMOS-MKH is distributed in the hope that it will be useful, but |
---|
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | * General Public License for more details. |
---|
18 | * |
---|
19 | * You should have received a copy of the GNU General Public License |
---|
20 | * along with ALMOS-MKH; if not, write to the Free Software Foundation, |
---|
21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
22 | */ |
---|
23 | |
---|
24 | /**************************************************************************** |
---|
25 | * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. * |
---|
26 | * * |
---|
27 | * It supports clusterised shared memory multi-processor architectures, * |
---|
28 | * where each processor is identified by a composite index [cxy,lid], * |
---|
29 | * with one physical memory bank per cluster. * |
---|
30 | * * |
---|
31 | * The 'boot.elf' file (containing the boot-loader binary code) is stored * |
---|
32 | * on disk and is loaded into memory by bscpu (whose index is [0,0]), * |
---|
33 | * executing the generic preloader. * |
---|
34 | * * |
---|
35 | * 1) The boot-loader first phase is executed by bscpu only, while * |
---|
36 | * all other cores are waiting in the preloader. * |
---|
37 | * It does the following tasks: * |
---|
38 | * - load into the memory bank of cluster (0,0) the 'arch_info.bin' * |
---|
39 | * file (containing the hardware architecture description) and the * |
---|
40 | * 'kernel.elf' file, at temporary locations, * |
---|
41 | * - initializes the 'boot_info_t' structure in cluster(0,0) * |
---|
42 | * (there is 1 'boot_info_t' per cluster), which contains both * |
---|
43 | * global and cluster specific information that will be used for * |
---|
44 | * kernel initialisation. * |
---|
45 | * - activate CP0s in all other clusters, using IPIs. * |
---|
46 | * - wait completion reports from CP0s on a global barrier. * |
---|
47 | * * |
---|
48 | * 2) The boot-loader second phase is then executed in parallel by all * |
---|
49 | * CP0s (other than bscpu). Each CP0 performs the following tasks: * |
---|
50 | * - copies into the memory bank of the local cluster the 'boot.elf', * |
---|
51 | * the 'arch_info.bin' (at the same addresses as the 'boot.elf' and * |
---|
52 | * the 'arch_info.bin' in the memory bank of the cluster(0,0), and * |
---|
53 | * the kernel image (at address 0x0), * |
---|
54 | * - initializes the 'boot_info_t' structure of the local cluster, * |
---|
55 | * - activate all other cores in the same cluster (CPi). * |
---|
56 | * - wait local CPi completion reports on a local barrier. * |
---|
57 | * - report completion to bscpu on the global barrier. * |
---|
58 | * * |
---|
59 | * 3) The boot-loader third phase is executed in parallel by all cores. * |
---|
60 | * After passing the global barrier the bscpu: * |
---|
61 | * - activates the CPi of cluster(0,0), * |
---|
62 | * - blocks on the local barrier waiting for all local CPi to report * |
---|
63 | * completion on the local barrier, * |
---|
64 | * - moves the local kernel image from the temporary location to the * |
---|
65 | * address 0x0, (erasing the preloader code). * |
---|
66 | * * |
---|
67 | * 4) All cores have finished the boot phase, they jump to the kern_init() * |
---|
68 | * function (maybe not at the same time). * |
---|
69 | ****************************************************************************/ |
---|
70 | |
---|
71 | #include <elf-types.h> |
---|
72 | #include <hal_types.h> |
---|
73 | |
---|
74 | #include <almos_config.h> |
---|
75 | #include <boot_config.h> |
---|
76 | |
---|
77 | #include <arch_info.h> |
---|
78 | #include <boot_info.h> |
---|
79 | |
---|
80 | #include <boot_utils.h> |
---|
81 | #include <boot_fat32.h> |
---|
82 | #include <boot_bdv_driver.h> |
---|
83 | #include <boot_hba_driver.h> |
---|
84 | #include <boot_tty_driver.h> |
---|
85 | |
---|
86 | /***************************************************************************** |
---|
87 | * Macros. |
---|
88 | ****************************************************************************/ |
---|
89 | |
---|
90 | #define PAGE_ROUND_DOWN(x) ((x) & (~PPM_PAGE_SIZE -1)) |
---|
91 | #define PAGE_ROUND_UP(x) (((x) + PPM_PAGE_SIZE-1) & \ |
---|
92 | (~(PPM_PAGE_SIZE-1))) |
---|
93 | |
---|
94 | /***************************************************************************** |
---|
95 | * Global variables. |
---|
96 | ****************************************************************************/ |
---|
97 | |
---|
98 | // synchronization variables. |
---|
99 | |
---|
100 | volatile boot_remote_spinlock_t tty0_lock; // protect TTY0 access |
---|
101 | volatile boot_remote_barrier_t global_barrier; // synchronize CP0 cores |
---|
102 | volatile boot_remote_barrier_t local_barrier; // synchronize cores in one cluster |
---|
103 | uint32_t active_cp0s_nr; // number of expected CP0s |
---|
104 | |
---|
105 | // kernel segments layout variables |
---|
106 | |
---|
107 | uint32_t seg_kcode_base; // kcode segment base address |
---|
108 | uint32_t seg_kcode_size; // kcode segment size (bytes) |
---|
109 | uint32_t seg_kdata_base; // kdata segment base address |
---|
110 | uint32_t seg_kdata_size; // kdata segment size (bytes) |
---|
111 | uint32_t kernel_entry; // kernel entry point |
---|
112 | |
---|
113 | // address used by the WTI to activate remote CP0s |
---|
114 | |
---|
115 | extern void boot_entry(); // boot_loader entry point |
---|
116 | |
---|
117 | /********************************************************************************* |
---|
118 | * This function returns the printable string for each device type |
---|
119 | ********************************************************************************/ |
---|
120 | char * device_type_str( uint32_t dev_type ) |
---|
121 | { |
---|
122 | if ( dev_type == DEV_TYPE_RAM_SCL ) return "RAM_SCL"; |
---|
123 | else if( dev_type == DEV_TYPE_ROM_SCL ) return "ROM_SCL"; |
---|
124 | else if( dev_type == DEV_TYPE_FBF_SCL ) return "FBF_SCL"; |
---|
125 | else if( dev_type == DEV_TYPE_IOB_TSR ) return "IOB_TSR"; |
---|
126 | else if( dev_type == DEV_TYPE_IOC_BDV ) return "IOC_BDV"; |
---|
127 | else if( dev_type == DEV_TYPE_IOC_HBA ) return "IOC_HBA"; |
---|
128 | else if( dev_type == DEV_TYPE_IOC_SDC ) return "IOC_SDC"; |
---|
129 | else if( dev_type == DEV_TYPE_IOC_SPI ) return "IOC_SPI"; |
---|
130 | else if( dev_type == DEV_TYPE_IOC_RDK ) return "IOC_RDK"; |
---|
131 | else if( dev_type == DEV_TYPE_MMC_TSR ) return "MMC_TSR"; |
---|
132 | else if( dev_type == DEV_TYPE_DMA_SCL ) return "DMA_SCL"; |
---|
133 | else if( dev_type == DEV_TYPE_NIC_CBF ) return "NIC_CBF"; |
---|
134 | else if( dev_type == DEV_TYPE_TIM_SCL ) return "TIM_SCL"; |
---|
135 | else if( dev_type == DEV_TYPE_TXT_TTY ) return "TXT_TTY"; |
---|
136 | else if( dev_type == DEV_TYPE_ICU_XCU ) return "ICU_XCU"; |
---|
137 | else if( dev_type == DEV_TYPE_PIC_TSR ) return "PIC_TSR"; |
---|
138 | else return "undefined"; |
---|
139 | } |
---|
140 | |
---|
141 | /************************************************************************************ |
---|
142 | * This function loads the arch_info.bin file into the boot cluster memory. |
---|
143 | ***********************************************************************************/ |
---|
144 | static void boot_archinfo_load() |
---|
145 | { |
---|
146 | archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
147 | |
---|
148 | // Load file into memory |
---|
149 | if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE)) |
---|
150 | { |
---|
151 | boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): " |
---|
152 | "<%s> file not found\n", |
---|
153 | ARCHINFO_PATHNAME); |
---|
154 | boot_exit(); |
---|
155 | } |
---|
156 | |
---|
157 | if (header->signature != ARCHINFO_SIGNATURE) |
---|
158 | { |
---|
159 | boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): " |
---|
160 | "<%s> file signature should be %x\n", |
---|
161 | ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE); |
---|
162 | boot_exit(); |
---|
163 | } |
---|
164 | |
---|
165 | #if DEBUG_BOOT_INFO |
---|
166 | boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n", |
---|
167 | __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE ); |
---|
168 | #endif |
---|
169 | |
---|
170 | } // boot_archinfo_load() |
---|
171 | |
---|
172 | /************************************************************************************** |
---|
173 | * This function loads the 'kernel.elf' file into the boot cluster memory buffer, |
---|
174 | * analyzes it, and places the the two seg_kcode & seg_kdata segments at their final |
---|
175 | * physical adresses (just after the preloader zone). |
---|
176 | * It set the global variables defining the kernel layout. |
---|
177 | *************************************************************************************/ |
---|
178 | static void boot_kernel_load() |
---|
179 | { |
---|
180 | Elf32_Ehdr * elf_header; // pointer on kernel.elf header. |
---|
181 | Elf32_Phdr * program_header; // pointer on kernel.elf program header. |
---|
182 | uint32_t phdr_offset; // program header offset in kernel.elf file. |
---|
183 | uint32_t segments_nb; // number of segments in kernel.elf file. |
---|
184 | uint32_t seg_src_addr; // segment address in kernel.elf file (source). |
---|
185 | uint32_t seg_paddr; // segment local physical address of segment |
---|
186 | uint32_t seg_offset; // segment offset in kernel.elf file |
---|
187 | uint32_t seg_filesz; // segment size (bytes) in kernel.elf file |
---|
188 | uint32_t seg_memsz; // segment size (bytes) in memory image. |
---|
189 | bool_t kcode_found; // kcode segment found. |
---|
190 | bool_t kdata_found; // kdata segment found. |
---|
191 | uint32_t seg_id; // iterator for segments loop. |
---|
192 | |
---|
193 | #if DEBUG_BOOT_ELF |
---|
194 | boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n", |
---|
195 | __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() ); |
---|
196 | #endif |
---|
197 | |
---|
198 | // Load kernel.elf file into memory buffer |
---|
199 | if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) ) |
---|
200 | { |
---|
201 | boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n", |
---|
202 | KERNEL_PATHNAME); |
---|
203 | boot_exit(); |
---|
204 | } |
---|
205 | |
---|
206 | // get pointer to kernel.elf header |
---|
207 | elf_header = (Elf32_Ehdr*)KERN_BASE; |
---|
208 | |
---|
209 | // check signature |
---|
210 | if ((elf_header->e_ident[EI_MAG0] != ELFMAG0) || |
---|
211 | (elf_header->e_ident[EI_MAG1] != ELFMAG1) || |
---|
212 | (elf_header->e_ident[EI_MAG2] != ELFMAG2) || |
---|
213 | (elf_header->e_ident[EI_MAG3] != ELFMAG3)) |
---|
214 | { |
---|
215 | boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): " |
---|
216 | "<%s> is not an ELF file\n", |
---|
217 | KERNEL_PATHNAME); |
---|
218 | boot_exit(); |
---|
219 | } |
---|
220 | |
---|
221 | // Get program header table offset and number of segments |
---|
222 | phdr_offset = elf_header->e_phoff; |
---|
223 | segments_nb = elf_header->e_phnum; |
---|
224 | |
---|
225 | // Get program header table pointer |
---|
226 | program_header = (Elf32_Phdr*)(KERN_BASE + phdr_offset); |
---|
227 | |
---|
228 | // loop on segments |
---|
229 | kcode_found = false; |
---|
230 | kdata_found = false; |
---|
231 | for (seg_id = 0; seg_id < segments_nb; seg_id++) |
---|
232 | { |
---|
233 | if (program_header[seg_id].p_type == PT_LOAD) // Found one loadable segment |
---|
234 | { |
---|
235 | // Get segment attributes. |
---|
236 | seg_paddr = program_header[seg_id].p_paddr; |
---|
237 | seg_offset = program_header[seg_id].p_offset; |
---|
238 | seg_filesz = program_header[seg_id].p_filesz; |
---|
239 | seg_memsz = program_header[seg_id].p_memsz; |
---|
240 | |
---|
241 | // get segment base address in buffer |
---|
242 | seg_src_addr = (uint32_t)KERN_BASE + seg_offset; |
---|
243 | |
---|
244 | // Load segment to its final physical memory address |
---|
245 | boot_memcpy( (void*)seg_paddr, |
---|
246 | (void*)seg_src_addr, |
---|
247 | seg_filesz ); |
---|
248 | |
---|
249 | #if DEBUG_BOOT_ELF |
---|
250 | boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n" |
---|
251 | " base = %x / size = %x\n", |
---|
252 | __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz ); |
---|
253 | #endif |
---|
254 | |
---|
255 | // Fill remaining memory with zero if (filesz < memsz). |
---|
256 | if( seg_memsz < seg_filesz ) |
---|
257 | { |
---|
258 | boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz); |
---|
259 | } |
---|
260 | |
---|
261 | // Note: we suppose that the 'kernel.elf' file contains only 2 |
---|
262 | // loadable segments ktext & kdata and that the main |
---|
263 | // difference between these two is the WRITE permission: ktext |
---|
264 | // contains read-only instructions and read_only data, |
---|
265 | // while kdata contains writable data. |
---|
266 | |
---|
267 | if ((program_header[seg_id].p_flags & PF_W) == 0) // kcode segment |
---|
268 | { |
---|
269 | if( kcode_found ) |
---|
270 | { |
---|
271 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
272 | " two loadable kcode segments found\n", |
---|
273 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
274 | boot_exit(); |
---|
275 | } |
---|
276 | |
---|
277 | kcode_found = true; |
---|
278 | seg_kcode_base = seg_paddr; |
---|
279 | seg_kcode_size = seg_memsz; |
---|
280 | } |
---|
281 | else // kdata segment |
---|
282 | { |
---|
283 | if( kdata_found ) |
---|
284 | { |
---|
285 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
286 | " two loadable kdata segments found\n", |
---|
287 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
288 | boot_exit(); |
---|
289 | } |
---|
290 | |
---|
291 | kdata_found = true; |
---|
292 | seg_kdata_base = seg_paddr; |
---|
293 | seg_kdata_size = seg_memsz; |
---|
294 | } |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | // check kcode & kdata segments found |
---|
299 | if( kcode_found == false ) |
---|
300 | { |
---|
301 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
302 | " kcode segment not found\n", |
---|
303 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
304 | boot_exit(); |
---|
305 | } |
---|
306 | if( kdata_found == false ) |
---|
307 | { |
---|
308 | boot_printf("\n[BOOT_ERROR] in %s for file %s :\n" |
---|
309 | " kdata segment not found\n", |
---|
310 | __FUNCTION__ , KERNEL_PATHNAME ); |
---|
311 | boot_exit(); |
---|
312 | } |
---|
313 | |
---|
314 | // set entry point |
---|
315 | kernel_entry = (uint32_t)elf_header->e_entry; |
---|
316 | |
---|
317 | #if DEBUG_BOOT_ELF |
---|
318 | boot_printf("\n[BOOT INFO] %s successfully completed for file %s at cycle %d\n", |
---|
319 | __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() ); |
---|
320 | #endif |
---|
321 | |
---|
322 | } // boot_kernel_load() |
---|
323 | |
---|
324 | /************************************************************************************* |
---|
325 | * This function initializes the boot_info_t structure for a given cluster. |
---|
326 | * @ boot_info : pointer to local boot_info_t structure |
---|
327 | * @ cxy : cluster identifier |
---|
328 | ************************************************************************************/ |
---|
329 | static void boot_info_init( boot_info_t * boot_info, |
---|
330 | cxy_t cxy ) |
---|
331 | { |
---|
332 | archinfo_header_t * header; |
---|
333 | archinfo_core_t * core_base; |
---|
334 | archinfo_cluster_t * cluster_base; |
---|
335 | archinfo_device_t * device_base; |
---|
336 | archinfo_irq_t * irq_base; |
---|
337 | |
---|
338 | archinfo_cluster_t * cluster; |
---|
339 | archinfo_cluster_t * my_cluster = NULL; // target cluster |
---|
340 | archinfo_cluster_t * io_cluster = NULL; // cluster containing ext. peripherals |
---|
341 | |
---|
342 | archinfo_core_t * core; |
---|
343 | uint32_t core_id; |
---|
344 | archinfo_device_t * device; |
---|
345 | uint32_t device_id; |
---|
346 | archinfo_irq_t * irq; |
---|
347 | uint32_t irq_id; |
---|
348 | |
---|
349 | boot_device_t * boot_dev; |
---|
350 | |
---|
351 | #if DEBUG_BOOT_INFO |
---|
352 | boot_printf("\n[BOOT INFO] %s : enter for cluster %x at cycle %d\n", |
---|
353 | __FUNCTION__ , cxy , boot_get_proctime() ); |
---|
354 | #endif |
---|
355 | |
---|
356 | // get pointer on ARCHINFO header and on the four arch_info arrays |
---|
357 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
358 | core_base = archinfo_get_core_base (header); |
---|
359 | cluster_base = archinfo_get_cluster_base(header); |
---|
360 | device_base = archinfo_get_device_base (header); |
---|
361 | irq_base = archinfo_get_irq_base (header); |
---|
362 | |
---|
363 | // Initialize global platform parameters |
---|
364 | boot_info->x_size = header->x_size; |
---|
365 | boot_info->y_size = header->y_size; |
---|
366 | boot_info->x_width = header->x_width; |
---|
367 | boot_info->y_width = header->y_width; |
---|
368 | boot_info->paddr_width = header->paddr_width; |
---|
369 | boot_info->io_cxy = header->io_cxy; |
---|
370 | |
---|
371 | // Initialize kernel segments |
---|
372 | boot_info->kernel_code_start = seg_kcode_base; |
---|
373 | boot_info->kernel_code_end = seg_kcode_base + seg_kcode_size; |
---|
374 | boot_info->kernel_data_start = seg_kdata_base; |
---|
375 | boot_info->kernel_data_end = seg_kdata_base + seg_kdata_size; |
---|
376 | |
---|
377 | // loop on arch_info clusters to get relevant pointers |
---|
378 | for (cluster = cluster_base; |
---|
379 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
380 | cluster++) |
---|
381 | { |
---|
382 | if( cluster->cxy == cxy ) my_cluster = cluster; |
---|
383 | if( cluster->cxy == header->io_cxy ) io_cluster = cluster; |
---|
384 | } |
---|
385 | |
---|
386 | if( my_cluster == NULL ) |
---|
387 | { |
---|
388 | boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n", |
---|
389 | __FUNCTION__ , cxy ); |
---|
390 | boot_exit(); |
---|
391 | } |
---|
392 | |
---|
393 | if( io_cluster == NULL ) |
---|
394 | { |
---|
395 | boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n", |
---|
396 | __FUNCTION__ , header->io_cxy ); |
---|
397 | boot_exit(); |
---|
398 | } |
---|
399 | |
---|
400 | // loop on all arch-info peripherals in IO_cluster, |
---|
401 | // to initialize the boot_info array of external peripherals |
---|
402 | |
---|
403 | #if DEBUG_BOOT_INFO |
---|
404 | boot_printf("\n[BOOT INFO] %s : External peripherals\n", __FUNCTION__ ); |
---|
405 | #endif |
---|
406 | |
---|
407 | device_id = 0; |
---|
408 | for (device = &device_base[io_cluster->device_offset]; |
---|
409 | device < &device_base[io_cluster->device_offset + io_cluster->devices]; |
---|
410 | device++ ) |
---|
411 | { |
---|
412 | // initialise one entry for each external peripheral |
---|
413 | if( (device->type != DEV_TYPE_RAM_SCL) && |
---|
414 | (device->type != DEV_TYPE_ICU_XCU) && |
---|
415 | (device->type != DEV_TYPE_MMC_TSR) && |
---|
416 | (device->type != DEV_TYPE_DMA_SCL) ) |
---|
417 | { |
---|
418 | boot_dev = &boot_info->ext_dev[device_id]; |
---|
419 | |
---|
420 | boot_dev->type = device->type; |
---|
421 | boot_dev->base = device->base; |
---|
422 | boot_dev->size = device->size; |
---|
423 | boot_dev->channels = device->channels; |
---|
424 | boot_dev->param0 = device->arg0; |
---|
425 | boot_dev->param1 = device->arg1; |
---|
426 | boot_dev->param2 = device->arg2; |
---|
427 | boot_dev->param3 = device->arg3; |
---|
428 | boot_dev->irqs = device->irqs; |
---|
429 | |
---|
430 | device_id++; |
---|
431 | } |
---|
432 | |
---|
433 | #if DEBUG_BOOT_INFO |
---|
434 | boot_printf(" - %s : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
435 | device_type_str( device->type ) , device->base , device->size , |
---|
436 | device->channels , device->irqs ); |
---|
437 | #endif |
---|
438 | |
---|
439 | // Initialize array of irq descriptors for PIC |
---|
440 | if (device->type == DEV_TYPE_PIC_TSR) |
---|
441 | { |
---|
442 | for (irq_id = 0; irq_id < CONFIG_MAX_IRQS_PER_PIC; irq_id++) |
---|
443 | { |
---|
444 | boot_dev->irq[irq_id].valid = 0; |
---|
445 | } |
---|
446 | |
---|
447 | for (irq = &irq_base[device->irq_offset]; |
---|
448 | irq < &irq_base[device->irq_offset + device->irqs]; |
---|
449 | irq++) |
---|
450 | { |
---|
451 | boot_dev->irq[irq->port].valid = 1; |
---|
452 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
453 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
454 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
455 | |
---|
456 | #if DEBUG_BOOT_INFO |
---|
457 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
458 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
459 | #endif |
---|
460 | } |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | // initialize number of external peripherals |
---|
465 | boot_info->ext_dev_nr = device_id; |
---|
466 | |
---|
467 | // Initialize cluster specific resources |
---|
468 | boot_info->cxy = my_cluster->cxy; |
---|
469 | |
---|
470 | #if DEBUG_BOOT_INFO |
---|
471 | boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ ); |
---|
472 | #endif |
---|
473 | |
---|
474 | // Initialize array of core descriptors |
---|
475 | core_id = 0; |
---|
476 | for (core = &core_base[my_cluster->core_offset]; |
---|
477 | core < &core_base[my_cluster->core_offset + my_cluster->cores]; |
---|
478 | core++ ) |
---|
479 | { |
---|
480 | boot_info->core[core_id].gid = (gid_t)core->gid; |
---|
481 | boot_info->core[core_id].lid = (lid_t)core->lid; |
---|
482 | boot_info->core[core_id].cxy = (cxy_t)core->cxy; |
---|
483 | |
---|
484 | #if DEBUG_BOOT_INFO |
---|
485 | boot_printf(" - core_gid = %x : cxy = %x / lid = %d\n", |
---|
486 | core->gid , core->cxy , core->lid ); |
---|
487 | #endif |
---|
488 | core_id++; |
---|
489 | } |
---|
490 | |
---|
491 | // Initialize number of cores in my_cluster |
---|
492 | boot_info->cores_nr = core_id; |
---|
493 | |
---|
494 | // loop on all peripherals in my_cluster to initialise |
---|
495 | // boot_info array of internal peripherals in my_cluster |
---|
496 | |
---|
497 | #if DEBUG_BOOT_INFO |
---|
498 | boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", __FUNCTION__ ); |
---|
499 | #endif |
---|
500 | |
---|
501 | device_id = 0; |
---|
502 | for (device = &device_base[my_cluster->device_offset]; |
---|
503 | device < &device_base[my_cluster->device_offset + my_cluster->devices]; |
---|
504 | device++ ) |
---|
505 | { |
---|
506 | // initialise one entry for each internal peripheral |
---|
507 | if( (device->type == DEV_TYPE_RAM_SCL) || |
---|
508 | (device->type == DEV_TYPE_ICU_XCU) || |
---|
509 | (device->type == DEV_TYPE_MMC_TSR) || |
---|
510 | (device->type == DEV_TYPE_DMA_SCL) ) |
---|
511 | { |
---|
512 | boot_dev = &boot_info->int_dev[device_id]; |
---|
513 | |
---|
514 | boot_dev->type = device->type; |
---|
515 | boot_dev->base = device->base; |
---|
516 | boot_dev->size = device->size; |
---|
517 | boot_dev->channels = device->channels; |
---|
518 | boot_dev->param0 = device->arg0; |
---|
519 | boot_dev->param1 = device->arg1; |
---|
520 | boot_dev->param2 = device->arg2; |
---|
521 | boot_dev->param3 = device->arg3; |
---|
522 | boot_dev->irqs = device->irqs; |
---|
523 | |
---|
524 | device_id++; |
---|
525 | } |
---|
526 | |
---|
527 | #if DEBUG_BOOT_INFO |
---|
528 | boot_printf(" - %s : base = %l / size = %l / channels = %d / irqs = %d\n", |
---|
529 | device_type_str( device->type ) , device->base , device->size , |
---|
530 | device->channels , device->irqs ); |
---|
531 | #endif |
---|
532 | |
---|
533 | // Initialize information about physical memory in cluster |
---|
534 | if (device->type == DEV_TYPE_RAM_SCL) |
---|
535 | { |
---|
536 | // Compute total number of physical memory pages in cluster |
---|
537 | boot_info->pages_nr = device->size >> CONFIG_PPM_PAGE_SHIFT; |
---|
538 | |
---|
539 | // Get the last address allocated for the kernel segments |
---|
540 | uint32_t end; |
---|
541 | if( boot_info->kernel_code_end > boot_info->kernel_data_end ) |
---|
542 | { |
---|
543 | end = boot_info->kernel_code_end; |
---|
544 | } |
---|
545 | else |
---|
546 | { |
---|
547 | end = boot_info->kernel_data_end; |
---|
548 | } |
---|
549 | |
---|
550 | // Compute the number of pages allocated for the kernel. |
---|
551 | if( (end & CONFIG_PPM_PAGE_MASK) == 0 ) |
---|
552 | { |
---|
553 | boot_info->pages_offset = end >> CONFIG_PPM_PAGE_SHIFT; |
---|
554 | } |
---|
555 | else |
---|
556 | { |
---|
557 | boot_info->pages_offset = (end >> CONFIG_PPM_PAGE_SHIFT) + 1; |
---|
558 | } |
---|
559 | |
---|
560 | #if DEBUG_BOOT_INFO |
---|
561 | boot_printf(" . physical memory : %x pages / first free page = %x\n", |
---|
562 | boot_info->pages_nr , boot_info->pages_offset ); |
---|
563 | #endif |
---|
564 | } |
---|
565 | |
---|
566 | // Initialize array of irq descriptors for XCU |
---|
567 | if (device->type == DEV_TYPE_ICU_XCU) |
---|
568 | { |
---|
569 | for (irq_id = 0; irq_id < CONFIG_MAX_HWIS_PER_ICU; irq_id++) |
---|
570 | { |
---|
571 | boot_dev->irq[irq_id].valid = 0; |
---|
572 | } |
---|
573 | |
---|
574 | for (irq = &irq_base[device->irq_offset]; |
---|
575 | irq < &irq_base[device->irq_offset + device->irqs]; |
---|
576 | irq++) |
---|
577 | { |
---|
578 | boot_dev->irq[irq->port].valid = 1; |
---|
579 | boot_dev->irq[irq->port].dev_type = irq->dev_type; |
---|
580 | boot_dev->irq[irq->port].channel = irq->channel; |
---|
581 | boot_dev->irq[irq->port].is_rx = irq->is_rx; |
---|
582 | |
---|
583 | #if DEBUG_BOOT_INFO |
---|
584 | boot_printf(" . irq_port = %d / source = %s / channel = %d / is_rx = %d\n", |
---|
585 | irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx ); |
---|
586 | #endif |
---|
587 | |
---|
588 | } |
---|
589 | } |
---|
590 | } |
---|
591 | |
---|
592 | // initialize number of internal peripherals in my_cluster |
---|
593 | boot_info->int_dev_nr = device_id; |
---|
594 | |
---|
595 | // set boot_info signature |
---|
596 | boot_info->signature = BOOT_INFO_SIGNATURE; |
---|
597 | |
---|
598 | } // boot_info_init() |
---|
599 | |
---|
600 | /*********************************************************************************** |
---|
601 | * This function check the local boot_info_t structure for a given core. |
---|
602 | * @ boot_info : pointer to local 'boot_info_t' structure to be checked. |
---|
603 | * @ lid : core local identifier, index the core descriptor table. |
---|
604 | **********************************************************************************/ |
---|
605 | static void boot_check_core( boot_info_t * boot_info, |
---|
606 | lid_t lid) |
---|
607 | { |
---|
608 | gid_t gid; // global hardware identifier of this core |
---|
609 | boot_core_t * this; // BOOT_INFO core descriptor of this core. |
---|
610 | |
---|
611 | // Get core hardware identifier |
---|
612 | gid = (gid_t)boot_get_procid(); |
---|
613 | |
---|
614 | // get pointer on core descriptor |
---|
615 | this = &boot_info->core[lid]; |
---|
616 | |
---|
617 | if ( (this->gid != gid) || (this->cxy != boot_info->cxy) ) |
---|
618 | { |
---|
619 | boot_printf("\n[BOOT ERROR] in boot_check_core() :\n" |
---|
620 | " - boot_info cxy = %x\n" |
---|
621 | " - boot_info lid = %d\n" |
---|
622 | " - boot_info gid = %x\n" |
---|
623 | " - actual gid = %x\n", |
---|
624 | this->cxy , this->lid , this->gid , gid ); |
---|
625 | boot_exit(); |
---|
626 | } |
---|
627 | |
---|
628 | } // boot_check_core() |
---|
629 | |
---|
630 | /********************************************************************************* |
---|
631 | * This function is called by CP0 in cluster(0,0) to activate all other CP0s. |
---|
632 | * It returns the number of CP0s actually activated. |
---|
633 | ********************************************************************************/ |
---|
634 | static uint32_t boot_wake_all_cp0s() |
---|
635 | { |
---|
636 | archinfo_header_t* header; // Pointer on ARCHINFO header |
---|
637 | archinfo_cluster_t* cluster_base; // Pointer on ARCHINFO clusters base |
---|
638 | archinfo_cluster_t* cluster; // Iterator for loop on clusters |
---|
639 | archinfo_device_t* device_base; // Pointer on ARCHINFO devices base |
---|
640 | archinfo_device_t* device; // Iterator for loop on devices |
---|
641 | uint32_t cp0_nb = 0; // CP0s counter |
---|
642 | |
---|
643 | header = (archinfo_header_t*)ARCHINFO_BASE; |
---|
644 | cluster_base = archinfo_get_cluster_base(header); |
---|
645 | device_base = archinfo_get_device_base (header); |
---|
646 | |
---|
647 | // loop on all clusters |
---|
648 | for (cluster = cluster_base; |
---|
649 | cluster < &cluster_base[header->x_size * header->y_size]; |
---|
650 | cluster++) |
---|
651 | { |
---|
652 | // Skip boot cluster. |
---|
653 | if (cluster->cxy == BOOT_CORE_CXY) |
---|
654 | continue; |
---|
655 | |
---|
656 | // Skip clusters without core (thus without CP0). |
---|
657 | if (cluster->cores == 0) |
---|
658 | continue; |
---|
659 | |
---|
660 | // Skip clusters without device (thus without XICU). |
---|
661 | if (cluster->devices == 0) |
---|
662 | continue; |
---|
663 | |
---|
664 | // search XICU device associated to CP0, and send a WTI to activate it |
---|
665 | for (device = &device_base[cluster->device_offset]; |
---|
666 | device < &device_base[cluster->device_offset + cluster->devices]; |
---|
667 | device++) |
---|
668 | { |
---|
669 | if (device->type == DEV_TYPE_ICU_XCU) |
---|
670 | { |
---|
671 | |
---|
672 | #if DEBUG_BOOT_WAKUP |
---|
673 | boot_printf("\n[BOOT] core[%x][0] activated at cycle %d\n", |
---|
674 | cluster->cxy , boot_get_proctime ); |
---|
675 | #endif |
---|
676 | |
---|
677 | boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry); |
---|
678 | cp0_nb++; |
---|
679 | } |
---|
680 | } |
---|
681 | } |
---|
682 | return cp0_nb; |
---|
683 | |
---|
684 | } // boot_wake_cp0() |
---|
685 | |
---|
686 | /********************************************************************************* |
---|
687 | * This function is called by all CP0 to activate all local CPi cores. |
---|
688 | * @ boot_info : pointer to local 'boot_info_t' structure, used to find |
---|
689 | * the XICU device associated with local CPi base addresses. |
---|
690 | *********************************************************************************/ |
---|
691 | static void boot_wake_local_cores(boot_info_t * boot_info) |
---|
692 | { |
---|
693 | boot_device_t * device; // Iterator on devices |
---|
694 | unsigned int core_id; // Iterator on cores |
---|
695 | |
---|
696 | // loop on devices to find XCU |
---|
697 | for (device = &boot_info->int_dev[0]; |
---|
698 | device < &boot_info->int_dev[boot_info->int_dev_nr]; |
---|
699 | device++) |
---|
700 | { |
---|
701 | if (device->type == DEV_TYPE_ICU_XCU) |
---|
702 | { |
---|
703 | // loop on cores |
---|
704 | for (core_id = 1; core_id < boot_info->cores_nr; core_id++) |
---|
705 | { |
---|
706 | |
---|
707 | #if DEBUG_BOOT_WAKUP |
---|
708 | boot_printf("\n[BOOT] core[%x][%d] activated at cycle %d\n", |
---|
709 | boot_info->cxy , core_id , boot_get_proctime() ); |
---|
710 | #endif |
---|
711 | boot_remote_sw((xptr_t) (device->base + (core_id << 2)), |
---|
712 | (uint32_t)boot_entry); |
---|
713 | } |
---|
714 | } |
---|
715 | } |
---|
716 | } // boot_wake_local_cores() |
---|
717 | |
---|
718 | |
---|
719 | /********************************************************************************* |
---|
720 | * This main function of the boot-loader is called by the boot_entry() |
---|
721 | * function, and executed by all cores. |
---|
722 | * The arguments values are computed by the boot_entry code. |
---|
723 | * @ lid : core local identifier, |
---|
724 | * @ cxy : cluster identifier, |
---|
725 | *********************************************************************************/ |
---|
726 | void boot_loader( lid_t lid, |
---|
727 | cxy_t cxy ) |
---|
728 | { |
---|
729 | boot_info_t * boot_info; // pointer on local boot_info_t structure |
---|
730 | |
---|
731 | if (lid == 0) |
---|
732 | { |
---|
733 | /**************************************************** |
---|
734 | * PHASE A : only CP0 in boot cluster executes it |
---|
735 | ***************************************************/ |
---|
736 | if (cxy == BOOT_CORE_CXY) |
---|
737 | { |
---|
738 | boot_printf("\n[BOOT] core[%x][%d] enters at cycle %d\n", |
---|
739 | cxy , lid , boot_get_proctime() ); |
---|
740 | |
---|
741 | // Initialize IOC driver |
---|
742 | if (USE_IOC_BDV) boot_bdv_init(); |
---|
743 | else if (USE_IOC_HBA) boot_hba_init(); |
---|
744 | // else if (USE_IOC_SDC) boot_sdc_init(); |
---|
745 | // else if (USE_IOC_SPI) boot_spi_init(); |
---|
746 | else if (!USE_IOC_RDK) |
---|
747 | { |
---|
748 | boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n"); |
---|
749 | boot_exit(); |
---|
750 | } |
---|
751 | |
---|
752 | // Initialize FAT32. |
---|
753 | boot_fat32_init(); |
---|
754 | |
---|
755 | // Load the 'kernel.elf' file into memory from IOC, and set |
---|
756 | // the global variables defining the kernel layout |
---|
757 | boot_kernel_load(); |
---|
758 | |
---|
759 | boot_printf("\n[BOOT] core[%x][%d] loaded kernel at cycle %d\n", |
---|
760 | cxy , lid , boot_get_proctime() ); |
---|
761 | |
---|
762 | // Load the arch_info.bin file into memory. |
---|
763 | boot_archinfo_load(); |
---|
764 | |
---|
765 | // Get local boot_info_t structure base address. |
---|
766 | // It is the first structure in the .kdata segment. |
---|
767 | boot_info = (boot_info_t *)seg_kdata_base; |
---|
768 | |
---|
769 | // Initialize local boot_info_t structure. |
---|
770 | boot_info_init( boot_info , cxy ); |
---|
771 | |
---|
772 | // check boot_info signature |
---|
773 | if (boot_info->signature != BOOT_INFO_SIGNATURE) |
---|
774 | { |
---|
775 | boot_printf("\n[BOOT ERROR] in %s reported by core[%x][%d]\n" |
---|
776 | " illegal boot_info signature / should be %x\n", |
---|
777 | __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE ); |
---|
778 | boot_exit(); |
---|
779 | } |
---|
780 | |
---|
781 | boot_printf("\n[BOOT] core[%x][%d] loaded boot_info at cycle %d\n", |
---|
782 | cxy , lid , boot_get_proctime() ); |
---|
783 | |
---|
784 | // Check core information. |
---|
785 | boot_check_core(boot_info, lid); |
---|
786 | |
---|
787 | // Activate other CP0s / get number of active CP0s |
---|
788 | active_cp0s_nr = boot_wake_all_cp0s() + 1; |
---|
789 | |
---|
790 | // Wait until all clusters (i.e all CP0s) ready to enter kernel. |
---|
791 | boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , |
---|
792 | active_cp0s_nr ); |
---|
793 | |
---|
794 | // activate other local cores |
---|
795 | boot_wake_local_cores( boot_info ); |
---|
796 | |
---|
797 | // Wait until all local cores in cluster ready |
---|
798 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , |
---|
799 | boot_info->cores_nr ); |
---|
800 | } |
---|
801 | /****************************************************************** |
---|
802 | * PHASE B : all CP0s other than CP0 in boot cluster execute it |
---|
803 | *****************************************************************/ |
---|
804 | else |
---|
805 | { |
---|
806 | // at this point, all INSTRUCTION address extension registers |
---|
807 | // point on cluster(0,0), but the DATA extension registers point |
---|
808 | // already on the local cluster to use the local stack. |
---|
809 | // To access the bootloader global variables we must first copy |
---|
810 | // the boot code (data and instructions) in the local cluster. |
---|
811 | boot_remote_memcpy( XPTR( cxy , BOOT_BASE ), |
---|
812 | XPTR( BOOT_CORE_CXY , BOOT_BASE ), |
---|
813 | BOOT_MAX_SIZE ); |
---|
814 | |
---|
815 | // from now, it is safe to refer to the boot code global variables |
---|
816 | boot_printf("\n[BOOT] core[%x][%d] replicated boot code at cycle %d\n", |
---|
817 | cxy , lid , boot_get_proctime() ); |
---|
818 | |
---|
819 | // switch to the INSTRUCTION local memory space, to avoid contention. |
---|
820 | asm volatile("mtc2 %0, $25" :: "r"(cxy)); |
---|
821 | |
---|
822 | // Copy the arch_info.bin file into the local memory. |
---|
823 | boot_remote_memcpy(XPTR(cxy, ARCHINFO_BASE), |
---|
824 | XPTR(BOOT_CORE_CXY, ARCHINFO_BASE), |
---|
825 | ARCHINFO_MAX_SIZE ); |
---|
826 | |
---|
827 | boot_printf("\n[BOOT] core[%x][%d] replicated arch_info at cycle %d\n", |
---|
828 | cxy , lid , boot_get_proctime() ); |
---|
829 | |
---|
830 | // Copy the kcode segment into local memory |
---|
831 | boot_remote_memcpy( XPTR( cxy , seg_kcode_base ), |
---|
832 | XPTR( BOOT_CORE_CXY , seg_kcode_base ), |
---|
833 | seg_kcode_size ); |
---|
834 | |
---|
835 | // Copy the kdata segment into local memory |
---|
836 | boot_remote_memcpy( XPTR( cxy , seg_kdata_base ), |
---|
837 | XPTR( BOOT_CORE_CXY , seg_kdata_base ), |
---|
838 | seg_kdata_size ); |
---|
839 | |
---|
840 | boot_printf("\n[BOOT] core[%x][%d] replicated kernel code at cycle %d\n", |
---|
841 | cxy , lid , boot_get_proctime() ); |
---|
842 | |
---|
843 | // Get local boot_info_t structure base address. |
---|
844 | boot_info = (boot_info_t*)seg_kdata_base; |
---|
845 | |
---|
846 | // Initialize local boot_info_t structure. |
---|
847 | boot_info_init( boot_info , cxy ); |
---|
848 | |
---|
849 | // Check core information. |
---|
850 | boot_check_core( boot_info , lid ); |
---|
851 | |
---|
852 | // get number of active clusters from BOOT_CORE cluster |
---|
853 | uint32_t count = boot_remote_lw( XPTR( BOOT_CORE_CXY , &active_cp0s_nr ) ); |
---|
854 | |
---|
855 | // Wait until all clusters (i.e all CP0s) ready to enter kernel |
---|
856 | boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count ); |
---|
857 | |
---|
858 | // activate other local cores |
---|
859 | boot_wake_local_cores( boot_info ); |
---|
860 | |
---|
861 | // Wait until all local cores in cluster ready |
---|
862 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , |
---|
863 | boot_info->cores_nr ); |
---|
864 | } |
---|
865 | } |
---|
866 | else |
---|
867 | { |
---|
868 | /*************************************************************** |
---|
869 | * PHASE C: all non CP0 cores in all clusters execute it |
---|
870 | **************************************************************/ |
---|
871 | |
---|
872 | // Switch to the INSTRUCTIONS local memory space |
---|
873 | // to avoid contention at the boot cluster. |
---|
874 | asm volatile("mtc2 %0, $25" :: "r"(cxy)); |
---|
875 | |
---|
876 | // Get local boot_info_t structure base address. |
---|
877 | boot_info = (boot_info_t *)seg_kdata_base; |
---|
878 | |
---|
879 | // Check core information |
---|
880 | boot_check_core(boot_info, lid); |
---|
881 | |
---|
882 | // Wait until all local cores in cluster ready |
---|
883 | boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr ); |
---|
884 | } |
---|
885 | |
---|
886 | // Each core compute address of a temporary kernel stack |
---|
887 | // in the upper part of the local cluster memory... |
---|
888 | uint32_t stack_ptr = ((boot_info->pages_nr - lid) << 12) - 16; |
---|
889 | |
---|
890 | // All cores initialise stack pointer, |
---|
891 | // reset the BEV bit in status register, |
---|
892 | // register "boot_info" argument in a0, |
---|
893 | // and jump to kernel_entry. |
---|
894 | asm volatile( "mfc0 $27, $12 \n" |
---|
895 | "lui $26, 0xFFBF \n" |
---|
896 | "ori $26, $26, 0xFFFF \n" |
---|
897 | "and $27, $27, $26 \n" |
---|
898 | "mtc0 $27, $12 \n" |
---|
899 | "move $4, %0 \n" |
---|
900 | "move $29, %1 \n" |
---|
901 | "jr %2 \n" |
---|
902 | :: "r"(boot_info) , "r"(stack_ptr) , "r"(kernel_entry) ); |
---|
903 | |
---|
904 | } // boot_loader() |
---|