
On the impact of many-cores small caches on the scalability
of shared-memory highly multi-threaded single-applications

Ghassan Almaless - Franck Wajsbürt
LIP6 - UPMC Sorbonne Universités -- 4, place Jussieu – Paris, France -- firstname.lastname@lip6.fr

 TSAR: Tera-Scale Architecture

•  Defined by LIP6 & BULL (European MEDEA+)
•  Clustered Architecture with 2D mesh NoC
•  cc-NUMA scalable up to +1024 cores
•  Each core has its own MMU and TLB
•  Shared distributed physical address space

 ALMOS: Advanced Locality Management OS

•  New research Unix-like OS
•  cc-NUMA dedicated
•  Enforce the localilty

of memory accesses
•  Legacy unmodified

applications are supported
•  Similar threading model and

implementation as Linux

 Evaluated Workloads

•  Unmodified HPC Applications
•  FFT & Ocean (SPLASH-2)
•  EPFilter (Philips medical-image filtering)

•  Highly multi-threaded single applications based on PThreads
•  Small execution time suitable for full-system accurate emulation
•  3 inter-threads communication scheme (NoC & caches stress)

•  All-to-all writes (EPFilter)
•  All-to-all reads (FFT)
•  Neighborhood reads & writes (Ocean)

 Experimental Results

TSAR configuration
•  Core type: MIPS32
•  L1-I & L1-D 16kB, 4-ways, 64B cache-line
•  TLB-I & TLB-D 16 entries, 4-ways
•  Memory-Cache (L2) 256kB, 16-ways
•  Mesh of 8x16 128 clusters, 512 cores

Problem sizes
•  Ocean (contiguous): grid of 514x514
•  FFT: 262144 (M=18) complex doubles
•  EPFilter: 1024x1024 pix (CF of 201x35 pix)

 Hardware Event Counters

Per-cluster incoming L2-cache requests
•  RD L1 data miss
•  INST L1 instruction miss
•  WR data write (write-through)
•  ITLB TLB instruction miss
•  DTLB TLB data miss
•  LL Linked Load
•  SC Store Conditional

Classification of incoming requests
•  Payload: RD, WR, LL, SC
•  Overhead: INST, ITLB, DTLB

Goal
•  Investigate if there is bad allocation
 or placement of physical pages

 Scalability Limitation Analysis

Histogram of remote cache-related requests received by a cluster
for the last two scalability points

•  Per cluster reduction of incoming payload request
•  Increase of overhead request received mainly by cluster (0,0)

Overhead treatment serialization is the bottleneck

 Scalability Drawback of Current Notion of Threads

6WDFN��

6WDFN��

7H[W

+HDS

3URJUDP�&RXQWHU
6WDFN�3RLQWHU
&38�UHJLVWHUV
)38�UHJLVWHUV

3URJUDP�&RXQWHU
6WDFN�3RLQWHU
&38�UHJLVWHUV
)38�UHJLVWHUV

3URFHVV�9LUWXDO�
$GGUHVV�6SDFH

7KUHDG��

7KUHDG��

•  The overhead-request cannot be
eliminated

•  DTLB and ITLB are related to the
notion of virtual address space

•  Process virtual address space is
defined by a single page tables

•  All threads share their process
address space

•  All threads refer to the same
page tables�

•  The observed bottleneck is inherently
related to this current notion of threads

 Solution in Principle

Goal: breaking the bottleneck by
•  Replicating the page tables
•  Replicating the instructions

*OREDO*OREDO *OREDO *OREDO

&OXVWHU &OXVWHU &OXVWHU &OXVWHU

7KUHDG 7KUHDG 7KUHDG 7KUHDG

&OXVWHU�L &OXVWHU�M

Each thread has its own virtual
address space with 3 regions
•  Thread-private (e.g. stack)
•  Cluster-shared (e.g. instructions)
•  Global-shared (e.g. heap)

Kernel-level solution
•  Transparent to userland
•  Conform to POSIX Threads standard

����	����

����	����

����	����

����� ����	����

����	����

����	����

����	

���

����	�������������������� �����������

5'��:5��,167
,7/%��'7/%

&OXVWHU
�[���\���

&OXVWHU
�[�\���

&OXVWHU
�[���\�

&OXVWHU
�[�\�

C
lu

st
er

 c
oo

rd
in

at
es

FFT EPFilter Ocean

Nb of requests (x1000)

