On the impact of many-cores small caches on the scalability
of shared-memory highly multi-threaded single-applications

Ghassan Almaless - Franck Wajsbiirt

LIP6 - UPMC Sorbonne Universités - 4, place Jussieu - Paris, France - firstname.lastname@lipé.fr

TSAR: Tera-Scale Architecture Hardware Event Counters

Goal
« Investigate if there is bad allocation
or placement of physical pages

Cluster Cluster Per-cluster incoming L2-cache requests
(xy+1) (x+1,y+1)
+ RD L1 data miss
« INST L1 instruction miss
* WR data write (write-through)
Cluster Cluster « ITLB TLB instruction miss
(xy) (x+1,y) « DTLB TLB data miss
- L Linked Load
+ Defined by LIP6 & BULL (European MEDEA+) + SC Store Conditional
» Clustered Architecture with 2D mesh NoC RD, WR, INST Classification of incoming requests
+ c-NUMA scclc.xb|e up to +1024 cores ITL8, DTLE « Payload: RD, WR, LL, SC
+ Each core has its own MMU and TLB + Overhead: INST, ITLB, DTLB

+ Shared distributed physical address space

ALMOS: Advanced Locality Management OS Scalability Limitation Analysis

FFT EPFilter Ocean
oomm o0 — ool
s L, comm o) — wim
e 8 comm (02—]
§ oomm , oo ——

R S5 (00) T CC] Ee—)

+ New research Unix-like OS s wm
K . t om y CE]
e + cc-NUMA dedicated 5 oom o o

. g = 00 m—

R « Enforce the |°cu||||y O wom= o —— o
N I = _—
" of memory accesses st e e AR s e s e e a
L . Legccy unmodified Nb of requests (x1000) ERD BINST ODTLB BB MWR @LL Osc
R applications are supported
c + Similar threading model and Histogram of remote cache-related requests received by a cluster
N implementation as Linux for the last two scalability points
v . . .
" + Per cluster reduction of incoming payload request
A + Increase of overhead request received mainly by cluster (0,0)

Overhead treatment serialization is the bottleneck

Vs S

Scalability Drawback of Current Notion of Threads

-(_Processing]
<. + The overhead-request cannot be
~ Atiross Space Throad 1 eliminated
— —— _ P— . DTI.AB and ITLB are related to the
itialization Parallel Synchro Parallel Finalization Stack Pointer notion of virtual address space
PP rogters « Process virtual address space is

« Unmodified HPC Applications

defined by a single page tables

OAENE

« FFT & Ocean (SPLASH-2) o e « All threads share thei
« EPFilter (Philips medicalimage filtering) Stack 1 | FrU redators cddr;::S;:C:re o process
+ Highly multithreaded single applications based on PThreads Trend2 « Al threads refer to the same
« Small execution time suitable for full-system accurate emulation page tables
+ 3 interthreads communication scheme (NoC & caches stress)
« Allto-all writes (EPFilter) & « The observed bottleneck is inherently
« All4o-all reads (FFT) related to this current notion of threads
» Neighborhood reads & writes (Ocean) / /
Experimental Results Solution in Principle

600

500

400

Speedup

200

100

Goal: breaking the bottleneck by

<¢-Ocean & FFT - EPFilter - Ideal TSAR configuration + Replicating the page tables
+ Core type: MIPS32 e = * Replicating the instructions
« L11 &L1-D 16kB, 4-ways, 64B cache-line Siobal Gioval Sloval Siobal
* TLB & TLB-D 16 entries, 4-ways Each thread has its own virtual
* Memory-Cache (L2) 256k, 16-ways address space with 3 regions
* Mesh of 8x16 128 clusters, 512 cores Thread Thread . Thread-ori
read-private (e.g. stack)
+ Cluster-shared (e.g. instructions)
Problem sizes 5 + Global-shared (e.g. heap)
+ Ocean (contiguous): grid of 514x514 omE@
+ FFT: 262144 (M=18) complex doubles p— p— Kernel-level solution
+ EPFilter: 1024x1024 pix (CF of 201x35 pix) ! « Transparent to userland

+ Conform to POSIX Threads standard

S /

Ip UPMC

SORBONNE

