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TSAR: Tera-Scale Architecture Hardware Event Counters

Goal
« Investigate if there is bad allocation
or placement of physical pages
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ALMOS: Advanced Locality Management OS Scalability Limitation Analysis
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Overhead treatment serialization is the bottleneck
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Scalability Drawback of Current Notion of Threads
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« Unmodified HPC Applications

defined by a single page tables
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+ Highly multithreaded single applications based on PThreads Trend2 « Al threads refer to the same
« Small execution time suitable for full-system accurate emulation page tables
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Experimental Results Solution in Principle
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Goal: breaking the bottleneck by

<¢-Ocean & FFT - EPFilter - Ideal TSAR configuration + Replicating the page tables
+  Core type: MIPS32 e = * Replicating the instructions
« L11 &L1-D 16kB, 4-ways, 64B cache-line Siobal Gioval Sloval Siobal
* TLB & TLB-D 16 entries, 4-ways Each thread has its own virtual
* Memory-Cache (L2) 256k, 16-ways address space with 3 regions
*  Mesh of 8x16 128 clusters, 512 cores Thread Thread . Thread-ori
read-private (e.g. stack)
+ Cluster-shared (e.g. instructions)
Problem sizes 5 + Global-shared (e.g. heap)
+ Ocean (contiguous): grid of 514x514 omE@
+ FFT: 262144 (M=18) complex doubles p— p— Kernel-level solution
+ EPFilter: 1024x1024 pix (CF of 201x35 pix) ! « Transparent to userland

+ Conform to POSIX Threads standard
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