
ALMOS Operating System on TSAR
Single-Chip cc-NUMA Many-Core

Ghassan Almaless
03 decembre 2012

Traditional Sources of Performance
Are Dead, Long Live for Many-Cores!

Source: Saman Amarasinghe, MIT (6.189 2007, Lec1)Illustration: A. TOVEY, Source: D. Paterson, UC-Berkeley

Many-Cores: Major Approaches & Their
Programming Environments

cc-NUMA: cache-coherent Non Uniform Memory Access
○ All programming environments (paradigms) are supported

■ Shared Memory: PThreads, OpenMP, TBB
■ Message Passing: MPI
■ OpenCL

○ Multi-chips: Intel Nehalem, AMD Opteron
○ Single-chip: Tilera Tile-Gx, Intel MIC

GPGPU: General Purpose computation on Graphics Processing Units
○ Programming environments: OpenCL, CUDA
○ Need a CPU to drive the GPU
○ Example: NVIDIA, AMD

MPPA: Massively Parallel Processor Array
○ Programing environments: Properaty SDK (c/c++, OpenCL)
○ Example: Kalray, Adapteva

How To Rate a Many-Core?
Programming effort (smaller is better)
● Compatibility is an important issue as a huge investment have been already

made to develop applications, computing kernels, data bases, etc.
● Time-To-Market requires the reuse of existing software, known and standard

programing languages and software technologies.

Performance (higher is better)
● ILP and clock-speed are no longer a source of performances
● Programs must be parallel in tasks to get performance,
● Performance depends on the scalability of hardware, OS and application.

Energy consumption (lower is better)
● Reduce the per-core area by using simple cores (static and dynamic conso.).
● Reduce the remote data access (energy by moved bit).

Single-chip cc-NUMA many-cores provide the best trade-off
regarding to programming-effort and performance per-Watt

TSAR (Tera-Scale ARchitecure)

● European MEDEA+ funded project (#2A718)
● Designed by LIP6 & BULL
● Single-chip cc-NUMA scalable up to +1024 cores
● Simple 32-bits RISC cores
● DSPIN GALS 2D mesh - NoC
● Can run a commodity operating system like Linux & BSD

The Locality of Memory Accesses
● The locality of memory accesses is a main issue in NUMA architectures

A poor locality leads to a performance collapsing and to a higher power
consumption.

● The granularity of placement control is the physical page (MMU)

● Different techniques to enforce the locality of memory accesses of a task
○ Allocation: allocate the requested physical page locally or near to core
○ Migration: move a given page to nearby the core that most using it
○ Replication: replicate a physical page to make it local to all cores

● Two schools of thought regarding the locality handling
○ Let the programmer manage explicitly the locality (Linux)

■ Expose the hardware topology by a specialised API (NUMActrl)
■ Not standard, Not portable,

Performances are tightly coupled with the underlying machine
○ Let the Operating System handle transparently the locality (ALMOS)

A Case Study for ALMOS Operating System
on The TSAR Single-Chip cc-NUMA Many-Core

Lets see some examples where ALMOS handles the locality
of memory access transparently to the programmer,
but first, lets see the used parallel applications.

Investigated Parallel Applications

● 4 unmodified benchmarks: SPLASH-2 FFT, EPFilter, Histogram, Tachyon

● Two cc-NUMA Targets:
○ ALMOS / TSAR with 256-cores (CABA emulated)
○ Linux / AMD Opteron Interlagos with 64-cores

Investigated Parallel Applications

● Unmodified 2 HPC applications
● SPLASH-2 / FFT & Philips EPFilter (medical-images filtering)
● Highly muli-threaded single applications based on PThreads
● All-To-All inter-threads communication scheme stressing NoC & caches
● Small exécution time suitable for full-system CABA emulation

Locality of Data Access
SPLASH-2 FFT (M18) on ALMOS/TSAR

Other Locality-Related Issues

● Memory accesses made by a core include
○ L1-Data miss
○ L1-Instruction miss
○ TLBs (Data & Instruction) miss

● More threads implies the usage of more cores which implies in turn more
traffic for L1-I and TLBs misses.

● The current notion of threads sharing the same process address space implies
that the code and page-tables cannot be replicated.
○ Almost all accesses are remote
○ They cause a bottleneck on few memory-controllers

● ALMOS introduces kernel-level solutions to deal with code and page-tables
replication in each cc-NUMA node.
○ cc-NUMA optimised implementation of PThreads
○ Native support for PGAS (Partitioned Global Address Space) paradigm

Evaluation of 4 Image & Signal
Processing Parallel Applications

● Question: what kind of performances we might expect from a
single-chip cc-NUMA many-core having small cores and caches?

● Metrics are:
○ Ease of programming
○ Performances per-Watt

AMD Interlagos 64-cores

Linux 2.6.39

TSAR 256-cores

ALMOS

Evaluation of 4 Image & Signal
Processing Parallel Applications

● Question: what kind of performances we might expect from a
single-chip cc-NUMA many-core having small cores and caches?

● Metrics are:
○ Ease of programming
○ Performances per-Watt

AMD Interlagos 64-cores

Linux 2.6.39

TSAR 256-cores

ALMOS

The same 4 unmodified parallel applications

Scalability Evaluation on ALMOS/TSAR

Cores

S
pe

ed
up

Scalability: ALMOS/TSAR & Linux/AMD

FFT EPFilter

Tachyon Histogram

S
pe

ed
up

Execution Time: ALMOS/TSAR & Linux/AMD

M
ill

io
n

of
 C

yc
le

s

FFT

Tachyon

EPFilter

Histogram

16/18

Execution Time: ALMOS/TSAR & Linux/AMD

M
ill

io
n

of
 C

yc
le

s

FFT

Tachyon

EPFilter

Histogram

Execution Time: ALMOS/TSAR & Linux/AMD

M
ill

io
n

of
 C

yc
le

s

FFT

Tachyon

EPFilter

Histogram

 1 AMD Opteron 6282SE (16-cores): 315 mm2
 1 TSAR having 64-cores should be < 32 mm2

 The consumption of AMD processor is 140 W

TSAR/ALMOS What is Next?

SHARP: Scalable Heterogeneous ARchitecture for Processing
● Partners: BiLCEM, Bull, CEA/Leti, DVLX, Linera,

METASymbiose, OPTISIS, Thales, UPMC/LIP6.

● Project leader: Bull

● Goal: developping an HPC prototype
○ High-end host CPUs
○ Several accelerators: TSAR, GPGPU, FPGA

● Our lab is working on the integration of TSAR as hardware accelerator
powered by ALMOS

● A small-scale prototype of TSAR has been successfully emulated on FPGA

● We investigate the programming model to be used
○ Hybrid model (MPI/OpenMP, MPI/PThreads)
○ Unified model based on PGAS (Partitioned Global Address Space)

Conclusion

● The number of cores is the new indicator instead of processor's frequency

● Different industries use/need many-cores with high demand in the near-future
○ Embedded systems
○ High-End computers
○ HPC (High Performances Computing)

● Single-chip cc-NUMA many-cores provide the best trade off for programing-
effort, performance and power-consumption.

● Our lab proposes an efficient single-chip cc-NUMA many-core architecture,
TSAR, with an optimized execution environment, ALMOS.

● Our lab is working on several enhancements for both of TSAR architecture and
ALMOS (e.g. cache-hierarchy optimisation controlled by the kernel, 3D-L3).

● We are seeking for further cooperations, are you interested?

