ALMOS Operating System on TSAR
Single-Chip cc-NUMA Many-Core

Ghassan Almaless
03 decembre 2012

L'p

Traditional Sources of Performance

Are Dead, Long Live for Many-Cores!

10,000,000
= Transistors (000) _ o o e
o Clock Speed (MHz) Picochip amisrie
1,000,000 a Power (W) PC102 Ab pyages
o Perf/Clock (ILP) Ci
ISCO
csrd
100,000 Intel
Tl
g
10,000
1,000 ‘ o G
100 | = Niagara , ACll

Boardcom 1480 OPteron 4P

A-Ak-Xeon WP
Xbox360
PA-8800 Opteron Tanglewood
POWEA &k Ak
PExtreve Powers
onah

4004 8080 8086 286 386 486 Pentum P2 P3 Itanium

8008 Athlon Itanium 2

1970 1975 1980 1985 1990 1995 2000 2005
Year 1970 1975 1980 1985 1990 1995 2000 2005 20?7

lllustration: A. TOVEY, Source: D. Paterson, UC-Berkeley Source: Saman Amarasinghe, MIT (6.189 2007, Lec1)

Many-Cores: Major Approaches & Their

Programming Environments

cc-NUMA: cache-coherent Non Uniform Memory Access

o All programming environments (paradigms) are supported
m Shared Memory: PThreads, OpenMP, TBB
m Message Passing: MPI
m OpenCL

o Multi-chips: Intel Nehalem, AMD Opteron

o Single-chip: Tilera Tile-Gx, Intel MIC

GPGPU: General Purpose computation on Graphics Processing Units

o Programming environments: OpenCL, CUDA
o Need a CPU to drive the GPU
o Example: NVIDIA, AMD

MPPA: Massively Parallel Processor Array

o Programing environments: Properaty SDK (c/c++, OpenCL)
o Example: Kalray, Adapteva

How To Rate a Many-Core?

Programming effort (smaller is better)

e Compatibility is an important issue as a huge investment have been already
made to develop applications, computing kernels, data bases, etc.

e Time-To-Market requires the reuse of existing software, known and standard
programing languages and software technologies.

Performance (higher is better)

e |LP and clock-speed are no longer a source of performances
e Programs must be parallel in tasks to get performance,
e Performance depends on the scalability of hardware, OS and application.

Energy consumption (lower is better)

e Reduce the per-core area by using simple cores (static and dynamic conso.).
e Reduce the remote data access (energy by moved bit).

Single-chip cc-NUMA many-cores provide the best trade-off

regarding to programming-effort and performance per-\Watt

TSAR (Tera-Scale ARchitecure)

TMR
DMA
ICU

NIC

Mem-
Cache

d

]

Local-Interconnect

vy

l I | D 1| D 1| D

I MMU MMU MMU MMU
CPU CPU CPU CPU
FPU FPU FPU FPU

European MEDEA+ funded project (#2A718)

Designed by LIP6 & BULL

Single-chip cc-NUMA scalable up to +1024 cores
Simple 32-bits RISC cores

DSPIN GALS 2D mesh - NoC

Can run a commodity operating system like Linux & BSD

The Locality of Memory Accesses

The locality of memory accesses is a main issue in NUMA architectures
A poor locality leads to a performance collapsing and to a higher power
consumption.

The granularity of placement control is the physical page (MMU)

Different techniques to enforce the locality of memory accesses of a task
o Allocation: allocate the requested physical page locally or near to core

o Migration: move a given page to nearby the core that most using it

o Replication: replicate a physical page to make it local to all cores

Two schools of thought regarding the locality handling
o Let the programmer manage explicitly the locality (Linux)
m Expose the hardware topology by a specialised APl (NUMActrl)
m Not standard, Not portable,
Performances are tightly coupled with the underlying machine
o Let the Operating System handle transparently the locality (ALMOS)

A Case Study for ALMOS Operating System

on The TSAR Single-Chip cc-NUMA Many-Core

Lets see some examples where ALMOS handles the locality
> of memory access transparently to the programmer,
but first, lets see the used parallel applications.

Investigated Parallel Applications

Processing Processing

\ /

\ /
e S s
/ \

/ \

Processing Processing

Initialization Phase Parallel Phase Sync. Phase Parallel Phase Finalization Phase

® 4 unmodified benchmarks: SPLASH-2 FFT, EPFilter, Histogram, Tachyon

® Two cc-NUMA Targets:
o ALMOS / TSAR with 256-cores (CABA emulated)
O Linux / AMD Opteron Interlagos with 64-cores

Investigated Parallel Applications

Processing } ,{ Processing
\ /
N\ /
@ Processing = = Ek = =1 Processing @
/ \
/ \
Processing }' \{ Processing

4 2 A 2 A 2 A s
<) X 4 b A 4 > <

Initialization Phase Parallel Phase Sync.Phase Parallel Phase Finalization Phase

Unmodified 2 HPC applications

SPLASH-2 / FFT & Philips EPFilter (medical-images filtering)

Highly muli-threaded single applications based on PThreads

All-To-All inter-threads communication scheme stressing NoC & caches
Small exécution time suitable for full-system CABA emulation

Locality of Data Access

SPLASH-2 FFT (M18) on ALMOS/TSAR

4 |deal == First-Touch W First-Touch
M Interleave
=% |[nterleave - - Auto-Next-Touch Auto-next-touch

Million of Cycles

Cores

Other Locality-Related Issues

Memory accesses made by a core include
o L1-Data miss

o L1-Instruction miss

o TLBs (Data & Instruction) miss

More threads implies the usage of more cores which implies in turn more
traffic for L1-1 and TLBs misses.

The current notion of threads sharing the same process address space implies
that the code and page-tables cannot be replicated.

o Almost all accesses are remote

o They cause a bottleneck on few memory-controllers

ALMOS introduces kernel-level solutions to deal with code and page-tables
replication in each cc-NUMA node.

o cc-NUMA optimised implementation of PThreads

o Native support for PGAS (Partitioned Global Address Space) paradigm

Evaluation of 4 Image & Signal

Processing Parallel Applications

e Question: what kind of performances we might expect from a
single-chip cc-NUMA many-core having small cores and caches?

e Metrics are:
o Ease of programming
o Performances per-Watt

‘ Linux 2.6.39 ‘ ‘ ALMOS ‘

TSAR 256-cores

‘ AMD Interlagos 64-cores ‘

Evaluation of 4 Image & Signal

Processing Parallel Applications

e Question: what kind of performances we might expect from a
single-chip cc-NUMA many-core having small cores and caches?

e Metrics are:
o Ease of programming
o Performances per-Watt

‘ The same 4 unmodified parallel applications ‘

‘ Linux 2.6.39 ‘ ‘ ALMOS ‘

‘ AMD Interlagos 64-cores ‘ ‘ TSAR 256-cores ‘

Scalability Evaluation on ALMOS/TSAR

4 Ideal EP1024 == FFT-M18
@ Histo -~ Tach-2048

Speedup

@ Ideal « M18-A ==M18-L == M20-L

70
60
so — FFT
40
30

0 —
M

1 4 16 64
= Ideal 2048-A % 1024-A ~ 512-A

6 2048-L w 1024-L. & 512-L

70

60

>._Tachyon /4
30 /

20 //

Scalability: ALMOS/TSAR & Linux/AMD

& Ideal = EP1024-A
w EP1024-L. @ EP2048-L
70

60 -
50 EPFilter
40
30
20
10

EP2048-A

1 4 16 64
i ldeal #= Histo-A == Histo-L s Histo-100-L
70
60
50
40
30
20
10

Execution Time: ALMOS/TSAR & Linux/AMD

mM18-A mM18-L EEP1024-A EEP2048-A
300 EP1024-L EWEP2048-L
250 3000
2500 :
200 2000 EPFilter
150 500
o 100 1000
QD 50 500
L>>~. 0 0 ._—. B ==
O 1 a4 16 64 1 a 16 64
4 m512-L m1024-L 2048-L m4096-L B Histo-A EHisto-L
c 512-A W1024-A m2048-A 400
o) 45000
= 40000 350
§ 35000 300
30000 250
25000 2001
20000 150
15000
10000 100
5000 — 50
0 0

64 1 4 16 64 16/18

Million of Cycles

Execution Time: ALMOS/TSAR & Linux/AMD

EM18-A mM18-L
300

250
200
150
100

50

1 4 16\ 64/

Em512-L m1024-L ' 2048-L m4096-L
512-A E1024-A W 2048-A
45000

40000

35000

30000
25000
20000

15000
10000
5000 —

0

3000

2500
2000

1500
1000

500

400
350

300

250

200

150
100
50

B EP1024-A EMEP2048-A
EP1024-L WEP2048-L

EPFilter

7N

| H =
1 4 16 64

H Histo-A EHisto-L

Execution Time: ALMOS/TSAR & Linux/AMD

mM18-A mM18-L EMEP1024-A WEP2048-A
300 EP1024-L WEP2048-L
3000
| ol i 2500 1
FF1 2000 EPFilter
1500

o)
)
S 1 AMD Opteron 6282SE (16-cores): 315 mm?
O 1 TSAR having 64-cores should be < 32 mm?
O
S The consumption of AMD processor is 140 W
= 20003

25000 —'Iiaehyen—

20000

15000

10000 ‘*

e | N I Y

1 < 16

TSAR/ALMOS What is Next?

: : MEDEA+
SHARP: Scalable Heterogeneous ARchitecture for Processing

e Partners: BILCEM, Bull, CEA/Leti, DVLX, Linera,

METASymbiose, OPTISIS, Thales, UPMC/LIPG. =.

e Project leader: Bull

e Goal: developping an HPC prototype
o High-end host CPUs
o Several accelerators: TSAR, GPGPU, FPGA

e Our lab is working on the integration of TSAR as hardware accelerator
powered by ALMOS

e A small-scale prototype of TSAR has been successfully emulated on FPGA

I NF I NI BAND

e \We investigate the programming model to be used
o Hybrid model (MPI/OpenMP, MPI/PThreads)
o Unified model based on PGAS (Partitioned Global Address Space)

Conclusion

e The number of cores is the new indicator instead of processor's frequency

e Different industries use/need many-cores with high demand in the near-future
o Embedded systems
o High-End computers
o HPC (High Performances Computing)

e Single-chip cc-NUMA many-cores provide the best trade off for programing-
effort, performance and power-consumption.

e Qur lab proposes an efficient single-chip cc-NUMA many-core architecture,
TSAR, with an optimized execution environment, ALMOS.

e Our lab is working on several enhancements for both of TSAR architecture and
ALMOS (e.g. cache-hierarchy optimisation controlled by the kernel, 3D-L3).

e \We are seeking for further cooperations, are you interested?

