
ALMOS distribution for the TSAR many-core
Summary1.
Compatibility2.
Setup3.
Start the simulation4.
Your first application5.
Running without the interactive mode6.

1.

Summary

Running ALMOS on the TSAR virtual prototype requires the installation of several open-source technologies like a
GCC cross-compiler for Mips (el), ?SocLib virtual prototyping library, ?TSAR related components, and
?SystemCASS. To simplify the task of building and configuring a correct development environment, ALMOS
comes with a stand-alone and ready-to-use distribution.

Mainly, this distribution enables you to:

Port your own applications and libraries to ALMOS.•
Run these applications on TSAR using several configurations ranging from 4 to 1024 cores.•
Analyse the performance of your applications or the totality of the software-stack on a large-scale
many-core.

•

Upon your needs you can also use this distribution to:

Validate and evaluate any kernel new features or updates.•
Experiment and develop new parallel programming libraries and run-times for a large-scale single-chip
many-core.

•

Consolidate/build your own educational materials in the field of operating systems and parallel
programming.

•

Validate and evaluate any hardware evolution/development in a TSAR based architecture.•

Compatibility

The distribution package contains some binary executables (e.g. GCC cross-compiler, TSAR simulator). These
programs can run on a Linux based distribution. They were tested on Ubuntu 10.04/12.04 and on Scientific Linux
6.2. Both 64 and 32 bits host machines are supported.

Setup

Download the latest stable distribution from this link. Decompress the .tbz2 file:

$ tar jxf almos-tsar-mipsel.tbz2

Now you have a sub-directory named almos-tsar-mipsel. In the reset of this page, we refer to the absolute path to
this directory as DISTRIB.

Start the simulation

Before any use of the distribution package you need to set some environment variables:

ALMOS distribution for the TSAR many-core 1

http://www.soclib.fr
https://www-asim.lip6.fr/trac/tsar
https://www-asim.lip6.fr/trac/systemcass

$ cd DISTRIB
$ source ./SourceMe

Note: by default you have to source this file from its local directory, that is, you have to be in the DISTRIB
directory.

Now, lets go to DISTRIB/test/pf1 and run make sim1:

$ cd DISTRIB/test/pf1
$ make sim1

This will launch the TSAR full-system simulator with its 4 tty terminals and one frame-buffer window. You will
end by having a shell prompt on the tty1.

That is it ... you are done !!

The tty0 and tty3 are reserved for the kernel trace and information messages. For a user application, the tty1
represent the stdin and stdout while the tty2 represent the stderr.

Sim1 rule means the simulator of TSAR is configured to one cluster, that is, 4 cores. Using sim4, sim16, sim64 or
sim128 lets you start the simulator with (respectively) 4, 16, 64 or 128 clusters of 4 cores each.

Note: although the hardware configuration can be changed at each simulation, there is no need to recompile or
regenerate the kernel. The kernel of ALMOS detects the hardware resources at each boot. A user application can
get the number of online cores using the standard sysconf call (man sysconf).

Now lets take a look inside the DISTRIB/test/pf1 directory.

$ ls DISTRIB/test/pf1
arch-info.bin bootloader.bin hdd-img.bin kernel-soclib.bin Makefile

After each make simN command (where N is 1, 4, 16, 64 or 128) you will have at least 4 .bin files. These bins are
required by the simulator. In the TSAR simulated platform, there is a ROM component and a H.D.D controller. The
ROM will be filled with the contents of arch-info.bin, bootloader.bin and kernel-soclib.bin before starting the
simulation. The hdd-img.bin is a FAT32 file system image sought by the H.D.D controller at each sector transfer.

The kernel-soclib.bin file is the ALMOS kernel while the bootloader.bin file is the ALMOS boot-loader for TSAR.
The arch-info.bin file contains the description of the TSAR hardware resources. This file is regenerated (copied
from DISTRIB/test/arch-bins) at each make simN command.

You can take a look to DISTRIB/test/pf1/Makefile. This file lets you customize some parameters like the used
ALMOS kernel revision and the number of simulator threads. If you want to run simultaneously several
configurations, lets say 4, you can create 3 additional DISTRIB/test/pf[2-4] directories each of which with its own
customized Makefile. Than in each of these pf directories you can type your make simN command.

Note: by default, the location from where the corresponding kernel revision is looked for is DISTRIB/test/kern-bins.
The number of simulator's threads should not exceed the number of the physical CPUs (not the logical one) of your
host machine. Finally, the hdd-imge.bin is a symbolic link to DISTRIB/test/misc/hdd-img.bin so be careful to
provide an hdd-img.bin regular file per pf directory when you run simultaneously a multiple instances of the
simulator.

Your first application

Start the simulation 2

Lets change the cap and look to how we can compile and run a user application for ALMOS/TSAR target. This task
can be resumed in 4 steps:

Write your application1.
Cross-compile it using ALMOS headers and libraries2.
Install it on the hdd-img.bin file system image3.
Go to your DISTRIB/test/pfX directory and run the TSAR simulator4.

Some example of applications source code can be found in DISTRIB/apps. Lets try the hello_world one. The main
function of this application asks the system for the number of online cores (count) and then it fires count threads
before it synchronizes on their end. Each fired thread executes the thread_func function which prints a "Hello
World" message.

To Cross-compile the application using ALMOS headers and static libraries:

$ cd DISTRIB/apps/hello_world
$ make TARGET=tsar

The result is the ./hello program for ALMOS. To install this program into ALMOS's file system (hdd-img.bin). Just
type:

$ make install

This will copy the hello program located in your current directory on your host machine (Linux) to /bin/hello inside
the hdd-img.bin file system image.

Now, lets go to the DISTRIB/test/pf1 directory and launch the simulator:

$ cd ''DISTRIB/test/pf1''
$ make sim1

Wait until you get a prompt on the tty1 console, then type:

[/HOME/ROOT]>ls /bin

The contents of /bin directory will be listed and the hello program must figure in the list. To run /bin/hello program,
type the following command on the tty1 console:

[/HOME/ROOT]>exec /bin/hello

You can see some kernel log messages on the tty0 and tty3 until you see the output of your hello program arrives on
the tty1.

That is it ... you are done !!

In a normal situation your application may have some bugs and you need to validate it. The recommended and most
convenient method is to test and validate your application on Linux before corss-compiling it for ALMOS. Lets go
back to DISTRIB/apps/hello_world and clean the directory before compiling the same application for Linux:

$ cd ''DISTRIB/apps/hello_world''
$ make realclean
$ make TARGET=linux

This will generate the ./hello program for Linux. To run it, just type:

$./hello

Your first application 3

Now, lets take a look to the Makefile:

$ cat ./Makefile

FILES=main
BIN=hello
ADD-CFLAGS=-O3

HDD=$(ALMOS_TEST)/pf1/hdd-img.bin

include $(ALMOS_TOP)/include/appli.mk

install:
 mcopy -i $(HDD) $(BIN) ::bin/.

The ALMOS_TEST and ALMOS_TOP are an environment variables exported by sourcing the DISTRIB/SourceMe
file from the DISTRIB directory. The fist one is equivalent to DISTRIB/test directory while the second is equivalent
to DISTRIB/almos.

The mcopy command enables you to copy a file from your host machine file system to a FAT file system image and
in particular to the hdd-image.bin. mdir and mdel are another two useful utilities from the mtools package (see man
mtools).

Running without the interactive mode

TBD ...

Running without the interactive mode 4

