** [ __[wiki:WikiStart Start]__ ] [ __[wiki:Howto-TP Config]__ ] [ __[htdocs:cours/doc_MIPS32.pdf MIPS User]__ ] [ __[wiki:Doc-MIPS-Archi-Asm-kernel MIPS Kernel]__ ] — [ __[htdocs:cours/AS5-9-4p.pdf Cours 9]__ ] [ __[htdocs:cours/AS5-10-4p.pdf Cours 10]__ ] [ __[htdocs:cours/AS5-11-4p.pdf Cours 11]__ ] — [ __[https://www-soc.lip6.fr/trac/archi-l3s5/wiki/AS5-TME9 TME 9]__ ] [ __[https://www-soc.lip6.fr/trac/archi-l3s5/wiki/AS5-TME10 TME 10]__ ] [ ''TME 11'' ] **[[PageOutline]]** Codes (tgz) → [ __[htdocs:files/kO6bin.tgz gcc & simulateur]__ ] [ __[htdocs:files/tp1.tgz TME 9]__ ] [ __[htdocs:files/tp2.tgz TME 10]__ ] [ __[htdocs:files/tp3.tgz TME 11]__ ] ** {{{#!html

Gestionnaire d'interruptions et application multi-tâches en temps partagé }}} Cette page décrit la séance complète : partie TD et partie TP. Elle commence par la partie TD avec des questions ou des exercices à faire sur papier, réparties dans 4 sections. Certaines questions de sections différentes sont semblables, c'est normal, cela vous permet de réviser. Puis, dans la partie TP, il y a des questions sur le code avec quelques exercices de codage simples à écrire et à tester sur le prototype. La partie TP est découpée en 3 étapes. Pour chaque étape, nous donnons (1) une brève description avec une liste des objectifs principaux de l'étape, (2) une liste des fichiers avec un bref commentaire sur chaque fichier, (3) une liste de questions simples dont les réponses sont dans le code, le cours ou le TD et enfin (4) un petit exercice de codage. **IMPORTANT\\Avant de faire cette séance, vous devez avoir lu les documents suivants** : * [htdocs:cours/AS5-11-4p.pdf Cours sur le gestionnaire d'interruption et les threads] : ''obligatoire'' * [htdocs:cours/doc_MIPS32.pdf Document sur l'assembleur du MIPS et la convention d'appel des fonctions] : ''recommandé, mais déjà lu'' * [wiki:Doc-MIPS-Archi-Asm-kernel Documentation sur le mode kernel du MIPS32] : ''obligatoire'' = A. Travaux dirigés == Rappel de cours Il est fortement recommandé de lire les transparents, toutefois, nous avons ajouté ci-après quelques rappels utiles pour répondre aux questions du TD. Dans cette séance, noua allons manipuler 3 contrôleurs de périphériques: Le TTY que vous connaissez déjà et deux autres, l'ICU et le TIMER. Ces trois contrôleurs s'utilisent grâce à des registres mappés (placés) dans l'espace d'adressage du MIPS. Les registres du TTY sont placés à partir de l'adresse `0xd0200000`, ceux de l'ICU à partir de l'adresse `0xd1200000` et enfin ceux du TIMER à partir de l'adresse `0xd3200000`. L'explication du rôle de ces registres est rappelée en partie dans ce texte et pour le détail, vous devez revoir le cours. Le choix des adresses de ces contrôleurs est fait par le créateur du matériel, elles ne peuvent pas être changées par le logiciel. Ces adresses sont données dans le fichier ldscript du kernel (`kernel.ld`) parce qu'elles ne sont utilisables que si le MIPS est en mode kernel (adresses > `0x80000000`). [[Image(htdocs:img/device_registers.png,nolink,height=180)]] Les IRQ (Interrupt !ReQuest)s sont des signaux électriques à 2 états (ON/OFF ou !Actif/Inactif ou encore !Levé/Baissé). Les IRQ sont levés par les contrôleurs de périphériques pour prévenir d'un événement (fin de commande, arrivée d'une donnée, etc.). Les IRQs provoquent l'exécution d'ISR (Interrupt Service Routine) par le noyau. Les ISR sont des fonctions qui reçoivent en argument un identifiant du contrôleur de périphérique qui a levé l'IRQ. Une ISR doit faire deux choses, (1) accéder aux registres du contrôleur de périphérique concerné pour faire ce que le périphérique demande et (2) acquitter l'IRQ, c'est-à-dire demander au contrôleur de périphérique de baisser/désactiver son IRQ (puisque celle-ci a été traitée). Les IRQ sont des signaux d'état qui doivent rester levés/activés tant qu'ils n'ont pas été acquittés par une ISR. Quand une IRQ se lève, la conséquence est que le programme en cours d'exécution sur le processeur recevant l'IRQ est interrompu et qu'il est dérouté vers le noyau pour que ce dernier exécute l'ISR prévue pour l'IRQ. Notez que ce n'est pas le processeur qui est interrompu, c'est bien le programme, car le processeur est seulement dérouté vers le noyau, mais il continue à travailler. [[Image(htdocs:img/Archi_TP11.png,nolink,height=250)]] Sur le schéma de la plateforme des TP, on peut voir que ce sont seulement les composants TTY et TIMER qui peuvent lever des IRQ. Les IRQ de ces contrôleurs de périphériques sont envoyés au composant ICU qui va les combiner pour produire un unique signal IRQ pour le processeur. Une IRQ peut être masquée, c'est-à-dire que le processeur ne va pas interrompre le programme en cours. Le masquage peut être demandé à plusieurs endroits : dans le composant ICU et dans le processeur lui-même. Le masquage est demandé par le noyau, le plus souvent de manière temporaire, quand il doit exécuter un code critique qui ne doit surtout pas être interrompu. [[Image(htdocs:img/IRQ_routage.png,nolink,height=200)]] Sur le schéma ci-dessus, on voit que l'IRQ du TTY0 entre sur l'entrée n°`10` de l'ICU, c'est un choix matériel qui n'est pas modifiable par logiciel. Son état est donc enregistré dans le bit n°10 du registre `ICU_STATE`. Il y a un `AND` avec le bit `10` du registre `ICU_MASK`. Si le bit `10` du registre `ICU_MASK` est à `0`, alors la sortie du `AND` est `0` et l'IRQ est masquée (donc invisible pour le processeur). Le registre `ICU_HIGHEST` contient toujours le numéro de l'IRQ active la plus prioritaire, comme il n'y en a qu'une dans cet exemple, `ICU_HIGHEST` contient `10`. L'IRQ de l'ICU entre sur l'entrée `0` des 6 IRQs possibles du MIPS et sa valeur s'inscrit dans le registre `HWI0` du registre `C0_CAUSE`. Il y a un `AND` avec le bit `HWI0` du registre `C0_STATUS`. Si le bit `HWI0` du registre `C0_STATUS` est à 0, alors la sortie du `AND` est `0` et l'IRQ est aussi masquée. Enfin, il y a encore un `AND` qui permet de masquer globalement les IRQ avec le bit `0` de `C0_STATUS` (c'est le bit `IE` pour Interrupt Enable) et le `NOT` du bit `1` de `C0_STATUS` (c'est le bit `EXL` EXception Level). Quand le signal IRQ vue par le MIPS s'active (passe à 1), c'est que l'IRQ levée par le contrôleur de périphérique doit être prise en charge. Le programme en cours est interrompu et dérouté vers `kentry` à l'adresse `0x80000180` et en même temps `C0_EPC ← PC+4`, `C0_CAUSE.XCODE ← 0`, `C0_STATUS.EXL ← 1`. Notez que le nom officiel de `C0_STATUS` est `C0_SR`, mais dans ce document, on utilise `C0_STATUS` pour plus de clarté. [[Image(htdocs:img/IRQ_VECTOR.png,nolink,height=220)]] Dans le schéma précédent, à gauche c'est le matériel et à droite c'est un extrait de la RAM contenant les structures de données utilisées par le noyau. - À gauche, on voit que les IRQ venant des contrôleurs de périphériques sont connectés aux entrées d'IRQ de l'ICU. Il y a 32 entrées possibles. Sur notre plateforme, par exemple l'IRQ du TTY2 est connectée à l'entrée `12` de l'ICU. Ce numéro d'entrée est le numéro qui identifie le contrôleur de périphérique. Notez que le registre `ICU_MASK` est en lecture seul, c'est-à-dire qu'il ne peut pas être écrit directement. Pour modifier le contenu du registre `ICU_MASK`, il faut utiliser deux autres registres de l'`ICU`: `ICU_SET` et `ICU_CLEAR`. `ICU_SET` permet de mettre à `1` les bits de `ICU_MASK`, et `ICU_CLEAR` permet de les mettre à `0`. Pour mettre à `1` le bit `i` du registre `ICU_MASK`, il faut écrire `1` dans le bit `i` du registre `ICU_SET`. Pour mettre à `0` le bit `j` du registre `ICU_MASK`, il faut aussi écrire `1`, mais dans le bit `j` du registre `ICU_CLEAR`.\\\\ - À droite, il y a les deux tableaux que le noyau utilise pour connaitre l'ISR à exécuter pour chaque numéro IRQ. Ce couple de tableaux se nomme **vecteur d'interruption**. Ici, il est composé des tableaux `IRQ_VECTOR_ISR[]` et `IRQ_VECTOR_DEV[]`. Le vecteur d'interruption est indexé par les numéros d'IRQ. Il contient deux informations: (1) Dans la case n°`i` du tableau `IRQ_VECTOR_ISR[]`, on trouve le pointeur sur la fonction ISR à appeler si l'IRQ n°`i` est levée, et (2) dans la case n°`i` du tableau `IRQ_VECTOR_DEV[]`, on trouve le numéro de l'instance du périphérique. Cette dernière information est nécessaire dans le cas des contrôleurs de périphérique multi-instances comme le TTY afin de savoir quel jeu de registres la fonction ISR doit utiliser. En d'autres termes, il y a une fonction ISR unique quelque-soit le numéro du TTY, l'adresse de cette fonction est placée dans les cases `10`, `11`, `12`, et `13` du tableau `IRQ_VECTOR_ISR[]` (si on a 4 TTYs) et dans les cases `10`, `11`, `12`, et `13` du tableau `IRQ_VECTOR_DEV[]`, on a `0`, `1`, `2` et `3` qui correspondent bien au numéro d'instance des TTYs. [[Image(htdocs:img/C0_registers.png,nolink,height=300)]] Sur le schéma précédent, nous vous rappelons les 3 registres du coprocesseur système qui sont utilisés au moment de l'entrée dans le noyau, quelque soit la cause : syscall (vu la semaine dernière), interruption (TD de cette semaine) et exception (dans le cas de problèmes lors de l'exécution du programme comme la division par 0). On voit aussi que les seules instructions qui peuvent manipuler ces registres sont `mtc0` et `mfc0` pour, respectivement, les écrire et les lire. Les bits `HWI0` des registres `C0_STATUS` (aussi nommé `c0_sr`) et `C0_CAUSE` contiennent respectivement le mask et le l'état de l'entrée n°`0` d'interruption du MIPS. Les bits `UM`, `IE` et `EXL` sont liés au mode d'exécution du MIPS: `UM` est le bit de mode du MIPS (`1`=`User Mode`, `0`=`Kernel Mode`), `IE` est le bit de masque général des interruptions (`1`=autorisées, `0`=masquées) et enfin `EXL` est le bit que le MIPS met à `1` à l'entrée dans le noyau pour informer d'un niveau exceptionnel et dans ce cas les bits `UM` et `IE` ne sont plus significatifs, si `EXL` est à `1` alors le MIPS est en mode kernel, interruptions masquées. == A. Travaux Dirigé La majorité des réponses aux questions ci-après sont dans le rappel du cours donné au début de cette page, c'est voulu. = Questions de cours sur les interruptions 1. A quelles adresses dans l'espaces d'adressage sont placés les registres des 3 contrôleurs de périphériques de la plateforme et comment le kernel les connaît ? {{{#!protected ------------------------------------------------------------------------------------ '' * __tty_regs_map = 0xd0200000 ; * __icu_regs_map = 0xd2200000 ; * __timer_regs_map = 0xd3200000 ; * Ces adresses sont définies dans le ldscript du kernel `kernel.ld` '' }}} 1. Que signifie l'acronyme I.R.Q. ? {{{#!protected ------------------------------------------------------------------------------------ '' * Interrupt ReQuest ou, en français, requête d'interruption '' }}} 1. Une IRQ est un signal électrique, combien peut-il avoir d'états ? {{{#!protected ------------------------------------------------------------------------------------ '' * C'est un signal à 2 états, c'est binaire. Il y a l'état `ON` (on dit aussi levé ou actif) pour dire que l'interruption est demandée et il y a l'état `OFF` (on dit aussi baissé ou inactif) pour dite que l'interruption n'est pas demandée). '' }}} 1. Qu'est-ce qui provoque une IRQ ? {{{#!protected ------------------------------------------------------------------------------------ '' * c'est un événement matériel sur le contrôleur de périphérique, comme la fin d'une commande ou l'arrivée d'une donnée. '' }}} 1. Les IRQ relient des composants source et des composants destinataires, quels sont ces composants ? Donnez un exemple. {{{#!protected ------------------------------------------------------------------------------------ '' * Les composants sources sont les contrôleurs de périphériques par exemple le `TTY` et les composants destinataires sont les processeurs (ici le MIPS). '' }}} 1. Que signifie masquer une IRQ ? {{{#!protected ------------------------------------------------------------------------------------ '' * Cela signifie que l'on bloque le signal entre sa source et sa destination. Si une IRQ est levée par un contrôleur de périphérique et que l'on masque cette IRQ, alors l'IRQ est toujours levée à sa source, mais le MIPS destinataire ne le voit pas. L'information, le signal, a été masquée sur le chemin entre la source et la destination. Cette IRQ devient invisible pour le MIPS. '' }}} 1. Quels composants peuvent masquer une IRQ ? {{{#!protected ------------------------------------------------------------------------------------ '' * Ici, c'est le composant ICU et le MIPS lui-même. '' }}} 1. Est-ce qu'une application utilisateur peut demander le masquage d'une IRQ ? {{{#!protected ------------------------------------------------------------------------------------ '' * Non, puisque pour masquer une interruption, il faut écrire dans les registres de l'ICU ou dans les registres système du processeur. Or, les registres de configuration de l'ICU sont mappés dans la partie de l'espace d'adressage inaccessible en mode user et que les instructions `mfc0` et `mtc0` sont interdites en mode user, leur usage provoque une exception de type violation de privilège. '' }}} 1. Que signifie l'acronyme I.S.R. ? {{{#!protected ------------------------------------------------------------------------------------ '' * Interrupt Service Routine ou, en français, routine d'interruption. En fait, c'est une fonction C normale. '' }}} 1. Dans la plateforme des TPs, sur quelles entrées de l'ICU sont branchées les IRQ venant des TTYs et du TIMER ? {{{#!protected ------------------------------------------------------------------------------------ '' * Les 4 IRQ de TTYs sont branchés sur les entrées `10`, `11`, `12` et `13` de l'ICU et l'IRQ du TIMER est sur l'entrée `0`. '' }}} 1. Quelle valeur mettre dans le registre `ICU_MASK` si on veut recevoir seulement les IRQ venant des 4 TTYs, dans le cas de la plateforme utilisée en TP ? Donnez le nombre en binaire et en hexadécimal. {{{#!protected ------------------------------------------------------------------------------------ '' * Il faut que les bits `10`, `11`, `12` et `13` de ICU_MASK soit à 1 donc `0b00000000.00000000.00111100.00000000` donc `0x00003C00`. '' }}} 1. L'écriture dans `ICU_MASK` n'est pas possible, comment modifier ce registre pour mettre à 1 le bit `0` ? {{{#!protected ------------------------------------------------------------------------------------ '' * Il faut écrire `1` dans le bit `0` de `ICU_SET`. '' }}} 1. Dans quel mode est le processeur quand il traite une IRQ ? {{{#!protected ------------------------------------------------------------------------------------ '' * Le MIPS est dans le mode kernel. '' }}} 1. Que fait le processeur lorsqu'il reçoit une IRQ masquée ? {{{#!protected ------------------------------------------------------------------------------------ '' * Il ne fait rien puisqu'il ne la voit pas. '' }}} 1. Que signifie acquitter une IRQ et qui le demande à qui ? {{{#!protected ------------------------------------------------------------------------------------ '' * Cela signifie baisser ou désactiver le signal IRQ et c'est l'ISR qui fait cette demande au contrôleur de périphérique concerné. '' }}} 1. Est-ce qu'une IRQ peut se désactiver sans intervention du processeur ? {{{#!protected ------------------------------------------------------------------------------------ '' * Non, quand une IRQ est levée, elle ne peut être désactivée que par le code de l'ISR concernée. Le contrôleur de périphérique n'a pas le droit de la désactiver tout seul. '' }}} 1. Est-ce qu'une IRQ peut ne pas être attendue par le noyau ? {{{#!protected ------------------------------------------------------------------------------------ '' * Non, le noyau ne doit pas être surpris par une IRQ, il doit avoir une ISR prévue. S'il doit traiter une IRQ non prévue, il affiche un message d'erreur, puis il masque cette IRQ dans l'ICU. Cela ne devrait jamais arriver. '' }}} 1. Quelle est la valeur du champ `XCODE` du registre `c0_cause` à l'entrée dans le noyau en cas d'interruption ? {{{#!protected ------------------------------------------------------------------------------------ '' * Il y a `0`. '' }}} 1. Quelle est la valeur écrite dans le registre `c0_EPC` à l'entrée dans le noyau en cas d'interruption ? {{{#!protected ------------------------------------------------------------------------------------ '' * C'est l'adresse de retour dans le programme interrompu. '' }}} 1. Que se passe-t-il dans le registre `c0_sr` à l'entrée dans le noyau en cas d'interruption et quelle est la conséquence ? {{{#!protected ------------------------------------------------------------------------------------ '' * Le bit `EXL` passe à 1 et la conséquence est que le MIPS passe en mode kernel, toutes les sont interruptions masquées. '' }}} 1. Le routine `kentry` (entrée du kernel à l'adresse `0x80000180`) appelle le gestionnaire d'interruption quand le MIPS reçoit une IRQ non masquée, que fait ce gestionnaire d'interruption ? {{{#!protected ------------------------------------------------------------------------------------ '' * Le gestionnaire d'interruption doit déterminer le numéro de l'IRQ en lisant dans le registre `ICU_HIGHEST` de l'ICU et il doit appeler la fonction ISR trouvée dans le tableau `IRQ_VECTOR_ISR[]` du vecteur d'interruption à la case du numéro de l'IRQ, en lui donnant en argument le numéro du périphérique (DEVice) trouvé dans le tableau `IRQ_VECTOR_DEV[]` à la case du numéro de l'IRQ. '' }}} 1. À l'entrée dans le noyau, `kentry` analyse le champ `XCODE` du registre de `c0_cause` et si c'est `0` alors il saut au code donné ci-après (ce n'est pas exactement le code que vous pouvez voir dans les fichiers sources pour que ce soit plus facile à comprendre). {{{#!c cause_irq: addiu $29, $29, -23*4 // 23 registers to save (18 tmp regs+HI+LO+$31+EPC+SR) mfc0 $27, $14 // $27 <- EPC (addr of syscall instruction) mfc0 $26, $12 // $26 <- SR (status register) sw $31, 22*4($29) // $31 because, it is lost by jal irq_handler sw $27, 21*4($29) // save EPC (return address of IRQ) sw $26, 20*4($29) // save SR (status register) mtc0 $0, $12 // SR <- kernel-mode without INT (UM=0 ERL=0 EXL=0 IE=0) sw $1, 1*4($29) // save all temporary registers including HI and LO sw $2, 2*4($29) [etc.] jal irq_handler // call the irq handler fontion écrite en C lw $1, 1*4($29) // restore all temporary registers including HI and LO lw $2, 2*4($29) [etc.] lw $26, 20*4($29) // get old SR lw $27, 21*4($29) // get return address of syscall lw $31, 22*4($29) // restore $31 mtc0 $26, $12 // restore SR mtc0 $27, $14 // restore EPC addiu $29, $29, 23*4 // restore the stack pointer eret // jr C0_EPC AND C0_SR.EXL <= 0 }}} Pourquoi, ne pas sauver les registres persistants ? {{{#!protected ------------------------------------------------------------------------------------ '' * On doit sauver les registres temporaires parce que l'IRQ peut interrompre le programme n'importe quand et qu'il faudra revenir à l'application interrompue dans le même état donc sans perte d'information dans les registres. On ne sauve pas les registres persistants parce que ce sera fait dans la fonction `irq_handler()`, si c'est nécessaire. '' }}} 1. La fonction `irq_handler()` a pour mission d'appeler la bonne ISR. Dans le code qui suit (extrait du fichier `kernel/harch.c`), on voit d'abord la déclaration de la structure qui décrit les registres présents dans l'ICU. En fait c'est un tableau de structure parce qu'il y a autant d'instances d'ICU que de processeurs (donné par NCPUS), ici, il y a un seul processeur MIPS, donc NCPUS=1. {{{#!c struct icu_s { int state; // state of all IRQ signals int mask; // IRQ mask to chose what we need for this ICU int set; // IRQ set --> enable specific IRQs for this ICU int clear; // IRQ clear --> disable specific IRQs for this ICU int highest; // highest pritority IRQ number for this ICU int unused[3]; // these 3 registers are not used }; extern volatile struct icu_s __icu_regs_map[NCPUS]; static int icu_get_highest (int icu) { return __icu_regs_map[icu].highest; } static void icu_set_mask (int icu, int irq) { __icu_regs_map[icu].set = 1 << irq; } void irq_handler (void) { int irq = icu_get_highest (cpuid()); irq_vector_isr[irq] (irq_vector_dev[irq]); } }}} La déclaration `extern volatile struct icu_s __icu_regs_map[NCPUS];` informe le compilateur que le symbole `__icu_regs_map` est défini ailleurs et que c'est un tableau de structures de type `struct icu_s`. Ainsi, `gcc` sait comment utiliser cette variable `__icu_regs_map`.\\\\ Rappelez dans quel fichier est défini `__icu_regs_map` ?\\ Que font les fonctions `icu_get_highest()`, `icu_set_mask()` et `irq_handler()`?\\ Comment s'appelle le couple de tableaux `irq_vector_isr[irq]` et `irq_vector_dev[irq]` ?\\ Combien ont-il de cases ? {{{#!protected ------------------------------------------------------------------------------------ '' * Ce symbole est défini dans le fichier ldscript du kernel `kernel/kernel.ld` * `icu_get_highest()` lit le registre `ICU_HIGHEST` de l'ICU et rend donc le numéro de l'IRQ la plus prioritaire. * `icu_set_mask()` met 1 dans le bit n°`irq` du registre `ICU_SET` de l'ICU n°`icu` (ici `icu` est à 0 parce qu'il faut une ICU par MIPS et qu'il n"y a qu'un seul MIPS). Cela a pour effet de mettre à `1` dans le bit n*`irq` du registre `ICU_MASK`. * `irq_handler()` va chercher dans l'ICU le numéro de l'IRQ la plus prioritaire et la copie dans la variable `irq` (cette notion de priorité n'a de sens que dans le cas où au moins deux IRQ sont actives en même temps). `irq_handler()` appelle la fonction ISR qui est dans la case n°`irq` du tableau `irq_vector_isr[]` et lui donne en argument le numéro d'instance qui est dans la case n°`irq` du tableau `irq_vector_dev[]`. * Les deux tableaux constituent le vecteur d'interruption et ils ont autant de cases que l'ICU prend d'IRQ, c.-à-d. 32. '' }}} 1. Si `ICU_HIGHEST` contient 10 (dans le cas de notre plateforme) que doit faire la fonction `irq_handler()` {{{#!protected ------------------------------------------------------------------------------------ '' * Si `ICU_HIGHEST` contient 10, c'est que c'est une IRQ du TTY0 et donc il faut appeler l'isr du TTY en lui passant 0 en argument. '' }}} 1. Que fait la fonction `icu_set_mask (int icu, int irq)` ? {{{#!protected ------------------------------------------------------------------------------------ '' * Elle met à `1` le bit `irq` du registre `ICU_MASK` de l'ICU n°`icu` (ici `0`). '' }}} = Exercices 1. La configuration des périphériques et des interruptions dans la fonction `arch_init()` se fait Comment configurer l'ICU masquer l'IRQ connectée sur son entrée n°5 ? {{{#!protected ------------------------------------------------------------------------------------ '' '' }}} [...] {{{#!comment 1. Le TIMER est le composant qui produit périodiquement des IRQ, (mettre la structure) écrivez le code d'une fonction qui active une IRQ tous les 1000 cycles. {{{#!protected ------------------------------------------------------------------------------------ '' '' }}} 1. Comment configurer le noyau pour qu'il exécute une ISR nommée `x_isr()` pour un périphérique `x` dont l'IRQ est connectée à l'entrée 3 ? {{{#!protected ------------------------------------------------------------------------------------ '' '' }}} 1. Pourquoi est-ce plus simple d'exécuter le traitement des interruptions en mode in-interruptible ? {{{#!protected ------------------------------------------------------------------------------------ '' '' }}} 1. On a vu qu'un syscall est comme un appel de fonction, il ne garantie pas que les registres temporaires sont conservés, mais il garantit que les registres persistants le sont. Est-ce que c'est pareil pour les interruptions ? {{{#!protected ------------------------------------------------------------------------------------ '' '' }}} }}} = TME sur les interruptions. == Ajout de l'ISR timer == Game Over Dans le premier TME, vous avez réalisé un petit jeu dans lequel vous deviez deviner un nombre tiré au hasard. Ce jeu avait été mis dans kinit parce qu'a ce moment, il n'y avait pas encore d'application utilisateur. Nous vous proposons de mettre le jeu dans l'application user et de limiter le temps pendant lequel vous pouvez jouer. Modifier l'ISR du timer pour afficher "Game Over" [...]