
1. Introduction1.
2. Registres protégés utilisables seulement en mode kernel2.
3. Adressage de la me?moire

D) JEU D'INSTRUCTIONS
1) Généralités et format des instructions1.
2) Codage des instructions2.
3) Jeu d'instructions3.

1.

E) EXCEPTIONS / INTERRUPTIONS / APPELS SYSTÈME
1) Exceptions1.
2) Interruptions2.
3) Appels système: instructions syscall et break3.
4) Signal RESET4.
5) Sortie du noyau5.
6) Gestion du registre d'état c0_sr6.
7) Gestion du registre de cause c0_cause7.

2.

3.

Documentation MIPS Architecture et
assembleur (mode kernel)

1. Introduction
Ce document est la suite du document Documentation MIPS32 architecture et assembleur (mode user) (Ce
document est tiré du document initialement écrit par Alain Greiner).

Le MIPS supporte deux modes de fonctionnement utilisateur (user) et système (kernel).

Dans le mode user, certaines régions de la mémoire et certains registres du processeur sont protégés et donc
inaccessibles. C'est dans ce mode que s'exécute les applications.

•

Dans le mode kernel, toutes les ressources sont accessibles, c'est-à-dire toute la mémoire et tous les
registres. Dans ce mode, toutes les instructions sont autorisées, à la fois les instructions standards (add,
or, lw, mul, etc.), mais aussi des instructions privilégiées qui vont permettre de contrôler l'état de
fonctionnement du processeur. C'est dans ce mode que s'exécute le noyau du système d'exploitation.

•

Ce document détaille les éléments de l'architecture du processeur et du langage d'assemblage spécifique au mode
kernel.

2. Registres protégés utilisables seulement en mode
kernel
En mode kernel, tous les registres sont accessibles, à la fois les registres non protégés et aussi des registres
protégés. Pour rappel, les registres non protégés sont les GPR ($0 à $31), le registre PC(accessible implicitement
avec les instructions de branchement) et les registres HI et LO. Les registres protégés sont destinés au calcul alors
que les registres protégés sont destinés au contrôle de l'état du processeur.

2. Registres protégés utilisables seulement en mode kernel 1

L'architecture du MIPS32 définit 32 registres protégés, numérotés de $0 à $31, c'est-à-dire comme les registres
GPR mais ils ont des instructions d'accès spécifiques. En effet, ces registres protégés ne sont accessibles que par les
instructions privilégiées mtc0 et mfc0. Ces instruction ne utilisables qu'en mode kernel. mtc0 et mfc0 signifient
respectivement Move-To-Coprocessor-0 et Move-From-Coprocessor-0.

Ces registres appartiennent au "coprocesseur système" n°0 (appélé aussi c0 pour Coprocessor 0). Dans cette
version du processeur MIPS32, il y en a 6. Ils sont tous utilisés par le système d?exploitation pour la gestion des
interruptions, des exceptions et des appels système.

Le registre c0_sr
Le registre sr de c0 est le registre d'état (Status Register). Il contient en particulier le bit qui définit le
mode d'exécution du processeur: user ou kernel, ainsi que les bits de masquage des interruptions.
Ce registre a le numéro $12.

Le registre c0_cause
Le registre cause de c0 est le registre de cause (Cause Register). En cas d'interruption, d'exception ou
d'appel système, le programme en cours d'exécution est dérouté vers le noyau du système d'exploitation. Le
contenu de c0_cause contient un code qui définit la cause d'appel du noyau.
Ce registre a le numéro $13.

Le registre c0_epc
Le registre epc de `c0 est le registre d'exception (Exception Program Counter). Il contient : (i) soit
l'adresse de retour (PC + 4) en cas d'interruption, (ii) soit l'adresse de l'instruction courante (PC) en cas
d'exception ou d'appel système.
Ce registre a le numéro $14.

Le registre c0_bar
Le registre bar de c0 est le registre d'adresse illégale (Bad Address Register). En cas d'exception de type
adresse illégale, il contient la valeur de l'adresse mal formée. Une adresse est illégale, par exemple, si vous
tentez une lecture de mot (lw) a une adresse non-alignée (non multiple de 4) ou si vous tentez une lecture
en dehors des segments d'adresse où se trouve de la mémoire.
Ce registre a le numéro $8.

Le registre c0_procid
Le registre procid est un registre en lecture seule contenant le numéro du processeur. Cet index « cablé »
est utilisé par le noyau du système d?exploitation. Il n'a de sens que pour gérer des architectures
multiprocesseurs (multicore).
Ce registre possède le numéro $15.

Le registre c0_count
Le registre count de c0 est le registre en lecture seulement contenant le nombre de cycles exécutés depuis
l?initialisation du processeur.
Ce registre possède le numéro $16.

Comportement des instructions mtc0et mfc0

instruction
assembleur

comportement dans le
processeur Remarques

mtc0 $gpr, $c0 Copro. 0 ($c0) ? GPR ($gpr) $c0 = $8, $12, $13, $14, $15 ou $16

2. Registres protégés utilisables seulement en mode kernel 2

$gpr = $0 ... $31

mfc0 $gpr, $c0 GPR ($gpr) ? Copro. 0 ($c0) $c0 = $8, $12, $13, $14, $15 ou $16
$gpr = $0 ... $31

3. Adressage de la me?moire
L?espace d'adressage de la mémoire est découpé en 2 parties identifiés par le bit de poids fort de l?adresse (bit
n°31) :

bit n°31 de l'adresse = 0 : partie non protégée, mode user pour l'utilisateur
bit n°31 de l'adresse = 1 : partie protégée mode kernel : réservée au noyau du système d'exploitation

Quand le processeur est en mode kernel alors les 2 parties (utilisateur et système) sont accessibles. Quand le
processeur est en mode user alors seule la partie utilisateur est accessible.

Quand le processeur est en mode utilisateur, si une instruction essaie d'accéder à la mémoire avec une adresse de la
partie système alors le processeur part en exception, c'est-à-dire que le programme est dérouté vers le noyau du
système d'exploitation (voir section E)

Si une anomalie est détectée au cours du transfert entre le processeur et la mémoire, alors le système mémoire le
signale ce qui déclenche également un départ en exception.

D) JEU D'INSTRUCTIONS

1) Généralités et format des instructions

Le processeur possède 57 instructions qui se répartissent en 4 classes :

33 instructions arithmétiques/logiques entre registres•
12 instructions de branchement•
7 instructions de lecture/écriture mémoire•
5 instructions système•

Toutes les instructions ont une longueur de 32 bits et possèdent l'un des trois formats suivants R, I ou J:

Format R
Le format R est utilisé par les instructions ayant 2 registres sources (désignés par RS et RT) et un registre
résultat désigné par RD.
La forme générale est OPCOD RD, RS, RT dont le comportement est RD <- RS OPCOD RT.
Par exemple sub $4,$8,$16 réalise $4 <- $8 - $16.
Codage:

OPCOD RS RT RD SH FUNC
31 25 20 15 10 5 0

Format I
Le format I est utilisé (i) par les instructions de lecture/écriture mémoire, (ii) par les instructions utilisant un
opérande immédiat, (iii) ainsi que par les branchements courte distance (conditionnels).

3. Adressage de la me?moire 3

La forme générale est OPCOD RT, RS, IMD16 dont le comportement est RT <- RS OPCOD
IMM16.
Par exemple addi $4,$8,-42 réalise $4 <- $8 - 42 ou lb $4,42($8) réalise $4 <-
MEM[$8 + 42]
Codage:

OPCOD RS RT IMD16
31 25 20 15 0

Format J
Le format J n?est utilisé que pour les branchements inconditionnels longue distance La forme générale est
OPCOD IMD26 dont le comportement est PC <- PC+IMD26.
Par exemple j 0x40 réalise PC <- PC + 0x40 (notez que l'argument de l'instruction est presque
toujours une étiquette du programme et que c'est le programme d'assemblage qui calcule la valeur IMD26).
Codage:

OPCOD IMD26
31 25 0

2) Codage des instructions

Le codage des instructions est principalement défini par les 6 bits du champ code opération (appelé OPCOD) de
l'instruction (INS 31:26). Cependant, trois valeurs particulières de ce champ définissent en fait une famille
d'instructions : il faut alors analyser d'autres bits de l'instruction pour décoder l'instruction. Ces codes particuliers
sont : SPECIAL (valeur "000000"), BCOND (valeur "000001") et COPRO (valeur "010000")

codage du champ OPCOD:
INS 28:26

INS 31:29 000 001 010 011 100 101 110 111

Par exemple, ce tableau indique que l'instruction LHU a un OPCOD à "100101".

•

Lorsque l'OPCODE a la valeur SPECIAL ("000000"), il faut analyser les 6 bits de poids faible de
l'instruction (INS 5:0):

•

INS 2:0
INS 5:3 000 001 010 011 100 101 110 111

Par exemple, l'instruction MTLO a un OPCOD à "000000" et le champ FUNC est à "010011".

Lorsque l'OPCOD a la valeur BCOND, il faut analyser les bits 20 et 16 de l'instruction.•

 INS 16
INS 20 0 1

Par exemple, l'instruction BTLZAL a un OPCOD à "000001",
le bit IN20 est à "1" et le bit INS16 est à "0"

1) Généralités et format des instructions 4

Lorsque l'OPCOD a la valeur COPRO, il faut analyser les bits 25 et 23 de l'instruction. Les trois
instructions de cette famille COPRO sont des instructions privilégiées. Remarquez que ERET à deux
codages.

•

 INS 16
INS 20 0 1

Par exemple, l'instruction MTC0 a un OPCOD à "010000",
le bit IN20 est à "0" et le bit INS16 est à "0".

3) Jeu d'instructions

Le jeu d'instructions est "orienté registres". Cela signifie que les instructions arithmétiques et logiques prennent
leurs opérandes dans des registres et rangent leur résultat dans un registre. Les seules instructions permettant de lire
ou d'écrire des données en mémoire effectuent un simple transfert entre un registre général et la mémoire, sans
aucun traitement arithmétique ou logique.

La plupart des instructions arithmétiques et logiques se présentent sous les 2 formes registre-registre et
registre-immédiat:

instruction assembleur comportement dans le processeur format d'instruction
add rd, rs, rt R(rd) <--- R(rs) op R(rt) format R
addi rd, rs, imm R(rd) <--- R(rs) op IMD16 format I

L?opérande immédiat 16 bits est signé pour les opérations arithmétiques et non signé pour les opérations logiques.

Le déplacement est de 16 bits pour les instructions de branchement conditionnelles (Bxxx) et de 26 bits pour les
instructions de saut inconditionnelles (Jxxx). De plus les instructions JAL, JALR, BGEZAL, et BLTZAL
sauvegardent une adresse de retour dans le registre $31. Ces instructions sont utilisées pour les appels de
sous-programme.

Toutes les instructions de branchement conditionnel sont relatives au PC (compteur ordinal) pour que le code soit
translatable (déplaçable ailleur en mémoire), c'est-à-dire que l'adresse de branchement est le résultat de l'addition
entre la valeur du compteur ordinal et un déplacement signé.

Les instructions mtc0 (move to c0) et mfc0 (move from c0) permettent de transférer le contenu des registres
c0_sr, c0_cause, c0_epc etc. vers un registre général GPR et inversement. Ces 2 instructions ne peuvent être
exécutées qu?en mode système, de même que l'instruction eret qui permet de restaurer l'état antérieur du registre
d'état c0_sr avant de sortir du gestionnaire d'exceptions.

E) EXCEPTIONS / INTERRUPTIONS / APPELS SYSTÈME

Il existe quatre types d'évènements qui peuvent interrompre l'exécution "normale" d'un programme:

les exceptions ;•
les interruptions ;•
les appels système (instructions syscall et break)•
le signal RESET.•

2) Codage des instructions 5

Dans tous ces cas, le principe général consiste à dérouter le programme vers un code spécial (appelée noyau du
système d'exploitation) qui s'exécute en mode système et à qui il faut transmettre les informations minimales lui
permettant de traiter le problème.

1) Exceptions

Les exceptions sont des évènements "anormaux" détectés au moment de l'exécution des instructions. Ils sont le plus
souvent liés à une erreur de programmation qui empêche l'exécution correcte de l'instruction en cours. La détection
d'une exception entraîne l'arrêt immédiat de l'exécution de l'instruction fautive. Ainsi, on assure que l'instruction
fautive ne modifie pas la valeur d'un registre visible ou de la mémoire. Les exceptions ne sont évidemment pas
masquables, cela signifie que l'on ne peut pas interdire leur gestion. Il y a 7 types d'exception dans cette version du
processeur MIPS32 :

ADEL
Adresse illégale en lecture : adresse non alignée ou se trouvant dans la partie système alors que le
processeur est en mode utilisateur.

ADES
Adresse illégale en écriture : adresse non alignée ou accès à une donnée dans le partie système alors que le
processeur est en mode utilisateur.

DBE
Data Bus Erreur : le système mémoire signale une erreur en activant le signal BERR à la suite d'un accès de
donnée à une adresse qui n'a pas de case mémoire associée. On dit qu'elle n'est pas mappée. Cette erreur est
aussi nommée erreur de segmentation ('segmentation fault` en anglais).

IBE
Instruction Bus Erreur : le système mémoire signale une erreur en activant le signal BERR à l'occasion
d'une lecture instruction. C'est le même problème que pour DBE mais cela concerne les instructions.

OVF
Dépassement de capacité : lors de l'exécution d'une instruction arithmétique (ADD ou ADDI), le résultat ne
peut être représenté sur 32 bits. Par exemple, la somme de 2 nombres positifs donne un nombre négatif.

RI
OPCOD illégal : l'OPCOD ne correspond à aucune instruction connue, il s'agit probablement d'un
branchement dans une zone mémoire ne contenant pas du code exécutable.

CPU
Coprocesseur inaccessible : tentative d'exécution d'une instruction privilégiée (mtc0, mfc0, eret) alors
que le processeur est en mode utilisateur.

Dans tous les cas, le processeur doit passer en mode système et se brancher au noyau du système d'exploitation
implanté à l'adresse 0x80000180. Après avoir identifié que la cause est une exception (en examinant le contenu
du registre c0_cause), le noyau se branche alors au gestionnaire d?exception. Ici, toutes les exceptions sont
fatales, il n'y a pas de reprise de l'exécution de l'application contenant l'instruction fautive. Le processeur doit
cependant transmettre au gestionnaire d'exceptions l'adresse de l'instruction fautive et indiquer dans le registre de
cause le type d'exception détectée. Lorsqu?il détecte une exception, le matériel doit donc:

sauvegarder PC (l'adresse de l'instruction fautive) dans le registre c0_epc ;•
passer en mode système et masquer les interruptions dans c0_sr ;•
sauvegarder éventuellement l?adresse fautive dans c0_bar;•
écrire le type de l'exception dans le registre c0_cause;•
brancher à l'adresse 0x80000180.•

E) EXCEPTIONS / INTERRUPTIONS / APPELS SYSTÈME 6

2) Interruptions

Les requêtes d'interruption matérielles sont des évènements asynchrones provenant des contrôleurs de
périphériques. Elles peuvent être masquées (ignorées) par le processeur. Le processeur MIPS32 possède 6 lignes
d'interruptions externes qui peuvent être masquées globalement ou individuellement. L'activation d'une de ces
lignes est une requête d'interruption. Elles sont notifiées dans le registre c0_cause et, si elles ne sont pas
masquées, elles sont prises en compte à la fin de l'exécution de l'instruction en cours. Cette requête doit être
maintenue active par le contrôleur de périphérique tant qu'elle n'a pas été prise en compte par le processeur.

Le processeur doit alors passer alors en mode système et se brancher au noyau du système d'exploitation. Après
avoir identifié que la cause est une interruption (en examinant le contenu du registre c0_cause), le noyau se
branche au gestionnaire d?interruption qui doit appeler une fonction appropriée pour le traitement de la requête.
Cette fonction est appelée routine d?interruption ou ISR (pour Interrupt Service Routine). Comme il faut reprendre
l'exécution de l'application en cours à la fin du traitement de l'interruption, il faut sauvegarder une adresse de retour.
Lorsqu?il reçoit une requête d?interruption non masquée, le matériel doit donc :

sauvegarder PC+4 (l'adresse de retour) dans le registre c0_epc ;•
passer en mode système et masquer les interruptions dans c0_sr ;•
écrire qu'il s'agit d'une interruption dans le registre c0_cause ;•
brancher à l'adresse 0x80000180program.•

En plus des 6 lignes d'interruption matérielles, le processeur MIPS32 possède un mécanisme d'interruption
logicielle: Il existe 2 bits dans le registre de cause c0_cause qui peuvent être écrits par le logiciel au moyen de
l'instruction privilégiée mtc0. La mise à 1 de ces bits déclenche le même traitement que les requêtes d'interruptions
externes, s'ils ne sont pas masqués.

3) Appels système: instructions syscall et break

L'instruction syscall permet à une application de l'utilisateur de demander un service au noyau du système
d'exploitation, comme par exemple effectuer une entrée-sortie. Le code définissant le type de service demandé au
système, et d'éventuels paramètres doivent avoir été préalablement rangés dans des registres généraux. L'instruction
break est utilisée plus spécifiquement pour poser un point d'arrêt (dans un but de debuggage du logiciel): on
remplace brutalement une instruction du programme à debugger par l'instruction break. Dans les deux cas, le
processeur passe en mode système et se branche ici encore au noyau. Après avoir identifié que la cause est un appel
système (en examinant le contenu du registre c0_cause), le noyau se branche au gestionnaire d?appels système.
Lorsqu?il rencontre une des deux instructions syscall ou break, le matériel effectue les opérations suivantes :

sauvegarder PC (l'adresse de l'instruction) dans le registre c0_epc (l?adresse de retour est PC + 4) ;•
passer en mode système et masquage des interruptions dans c0_sr ;•
écrire la cause du déroutement dans le registre c0_cause ;•
brancher à l'adresse 0x80000180.•

4) Signal RESET

Le processeur possède également une entrée RESET dont l'activation pendant au moins un cycle entraîne le
branchement inconditionnel du code de démarrage de l'ordinateur (code de boot). Ce code, implanté à l?adresse
0xBFC00000 doit principalement charger le code du noyau du système d?exploitation dans la mémoire depuis le
disque ou le réseau et se brancher à la fonction d'initialisation du noyau. Cette fonction initialise les contrôleurs de
périphériques et les structures internes du noyau et, à la fin elle se branche à la première application utilisateur.

2) Interruptions 7

Dans notre modèle d'ordinateur, le noyau est pré-chargé en mémoire et le code de boot se contente d'appeler la
fonction d'initialisation.

Cette requête est très semblable à une septième ligne d'interruption externe avec les différences importantes
suivantes:

elle n'est pas masquable :•
il n'est pas nécessaire de sauvegarder une adresse de retour.•
le gestionnaire de reset est implanté à l'adresse "0xBFC00000".•

Dans ce cas, le processeur doit :

passer en mode système et masque les interruptions dans SR•
brancher à l'adresse "0xBFC00000"•

5) Sortie du noyau

Avant de reprendre l'exécution de l'application qui a effectué un appel système (instructions syscall) ou qui a été
interrompu par une interruption, il est nécessaire d'exécuter l'instruction eret. Cette instruction modifie le contenu
du registre c0_sr, et effectue un branchement à l?adresse contenue dans le registre c0_epc.

6) Gestion du registre d'état c0_sr

Le registre c0_sr contient l'état du processeur. Cela concerne son comportement vis-à-vis des requêtes
d'interruptions, c'est-à-dire les masques des interruptions matérielles et logicielles, et le mode d'exécution, mode
système (kernel) ou en mode utilisateur (user).

La figure suivante présente le contenu des 16 bits de poids faible du registre c0_sr. Cette version du
MIPS32 n?utilise que 12 bits:
IM[7:0] 0 0 0 UM 0 ERL EXL IE
 15 8 7 6 5 4 3 2 1 0

•

IE Interrupt Enable
0 = toutes les interruptions sont masquées
1 = interruptions non-masquées mais elles peuvent l'être avec
IM[7:0]

EXL Exception Level

0 = aucun effet sur le processeur
1 = le processeur vient d'entrer dans le noyau
et donc le processeur est en mode kernel et interruptions
massquées

ERL Error Level 1 = après le signal reset ou certaines erreurs de la mémoire

UM User Mode 0 = mode d'exécution kernel
1 = mode d'exécution user

IM![7:0]
Masques
individuels

pour les six lignes d?interruption matérielles (bits IM[7:2])
et pour les 2 interruptions logicielles (bits IM[1:0])

Quelques remarques :
Le processeur a le droit d?accéder aux ressources protégées (registres du coprocessor 0 c0), et aux
adresses mémoires >= 0x80000000) si et seulement si le bit UM vaut 0, ou si l?un des deux bits

♦
•

4) Signal RESET 8

ERL et EXL vaut 1.
Les interruptions sont autorisées si et seulement si le bit IE vaut 1, et si les deux bits ERL et EXL
valent 00, et si le bit correspondant de IM vaut 1.

♦

Les trois types d?événements qui déclenchent le branchement au noyau: (interruptions, exceptions
et appels système) forcent le bit EXL à 1, ce qui masque les interruptions et autorise l?accès aux
ressources protégées.

♦

L?activation du signal RESET qui force le branchement au code de boot force le bit ERL à 1, ce
qui masque les interruptions et autorise l?accès aux ressources protégées.

♦

L?instruction eret force le bit EXL à 0.♦

Lors de l?activation du RESET :
c0_sr contient donc la valeur 0x0004 (0b0000000000000100).♦
Pour exécuter un programme utilisateur en mode protégé, avec interruptions activées, il doit
contenir la valeur 0xFF11.

♦

Le noyau doit écrire la valeur 0xFF13 dans c0_sr et l?adresse de la première fonction du
programme utilisateur dans c0_epc avant d?appeler l?instruction eret.

♦

•

7) Gestion du registre de cause c0_cause

Le registre c0_cause contient trois champs. Les 4 bits du champ XCODE[3:0] définissent la cause de l'appel du
noyau. Les 6 bits du champ IRQ[5:0] représentent l'état des lignes d'interruption externes au moment de l'appel
su noyau. Les 2 bits SWI[1:0] représentent les requêtes d'interruption logicielle.

La figure suivante montre le format du registre de cause CR :
IRQ[5:0] SWI[1:0] 0 0 XCODE[3:0] 0 0
 15 10 9 8 7 6 5 4 3 2 1 0

•

Les valeurs possibles du champ XCODE sont les suivantes :•

0000 INT Interruption
0001 Inutilisé
0010 Inutilisé
0011 Inutilisé
0100 ADEL Adresse illégale en lecture
0101 ADES Adresse illégale en écriture
0110 IBE Bus erreur sur accès instruction
0111 DBE Bus erreur sur accès donnée
1000 SYS Appel système (syscall)
1001 BP Point d'arrêt (break)
1010 RI OPCOD illégal
1011 CPU Coprocesseur inaccessible
1100 OVF Overflow arithmétique
1101 Inutilisé
1110 Inutilisé
1111 Inutilisé

6) Gestion du registre d'état c0_sr 9

