1. 1. Introduction
2. 2. Registres protégés utilisables seulement en mode kernel
3. 3. Adressage de la me?moire
4. 4. Instructions protégées
5. 5. Exceptions / Interruptions / Appels syste?me
1. 5.1. Exceptions
2. 5.2 Interruptions
3. 5.3 Appels systéme: instruction syscall
1.4) Signal RESET
2. 5) Sortie du noyau
3. 6) Gestion du registre d'état c0_sr

4.7) Gestion du registre de cause c0 cause

Documentation MIPS Architecture et
assembleur (mode kernel)

1. Introduction
Ce document est la suite du document Documentation MIPS32 architecture et assembleur (mode user) (Ce

document est tiré du document initialement écrit par Alain Greiner).
Le MIPS supporte deux modes de fonctionnement utilisateur (user) et systeme (kernel).

¢ Dans le mode user, certaines régions de la mémoire et certains registres du processeur sont protégés et donc
inaccessibles. C'est dans ce mode que s'exécute les applications.

e Dans le mode kernel, toutes les ressources sont accessibles, c'est-a-dire toute la mémoire et tous les
registres. Dans ce mode, toutes les instructions sont autorisées, a la fois les instructions standards (add,
or, 1w, mul, etc.), mais aussi des instructions protégées qui vont permettre de contrdler 1'état de
fonctionnement du processeur. C'est dans ce mode que s'exécute le noyau du systeme d'exploitation.

Ce document détaille les éléments de I'architecture du processeur et du langage d'assemblage spécifique au mode
kernel.

2. Registres protégeés utilisables seulement en mode
kernel

En mode kernel, tous les registres sont accessibles, a la fois les registres non protégés et aussi des registres
protégés. Pour rappel, les registres non protégés sont les GPR ($0 a $31), le registre PC(accessible implicitement
avec les instructions de branchement) et les registres HI et LO. Les registres protégés sont destinés au calcul alors
que les registres protégés sont destinés au contrdle de I'état du processeur.

L'architecture du MIPS32 définit 32 registres protégés, numérotés de $0 a $31, c'est-a-dire comme les registres

GPR mais ils ont des instructions d'acces spécifiques. En effet, ces registres protégés ne sont accessibles que par
des instructions protégées présentées dans la section 4.

2. Registres protégés utilisables seulement en mode kernel 1

Ces registres appartiennent au "coprocesseur systeme" n°0 (appélé aussi cO pour Coprocessor 0). Dans cette
version du processeur MIPS32, il y en a 6. Ils sont tous utilisés par le systeme d?exploitation pour la gestion des
interruptions, des exceptions et des appels systeme. Dans ce document, nous ferons précéder le numéro du registre
protégé par cO__ afin de lever I'ambiguités.

Le registre cO_sr
Le registre sr de cO est le registre d'état (Status Register). Il contient en particulier le bit qui définit le
mode d'exécution du processeur: user ou kernel, ainsi que les bits de masquage des interruptions.
Ce registre a le numéro $12.

Le registre cO_cause
Le registre cause de cO est le registre de cause (Cause Register). En cas d'interruption, d'exception ou
d'appel systeme, le programme en cours d'exécution est dérouté vers le noyau du systeme d'exploitation. Le
contenu de c0_cause contient un code qui définit la cause d'appel du noyau.
Ce registre a le numéro $13.

Le registre cO_epc
Le registre epc de “c0 est le registre d'exception (Exception Program Counter). 1l contient : (i) soit
I'adresse de retour (PC + 4) en cas d'interruption, (ii) soit 'adresse de l'instruction courante (PC) en cas
d'exception ou d'appel systeme.
Ce registre a le numéro $14.

Le registre cO_bar
Le registre bar de cO est le registre d'adresse illégale (Bad Address Register). En cas d'exception de type
adresse illégale, il contient la valeur de l'adresse mal formée. Une adresse est illégale, par exemple, si vous
tentez une lecture de mot (1w) a une adresse non-alignée (non multiple de 4) ou si vous tentez une lecture
en dehors des segments d'adresse ou se trouve de la mémoire.
Ce registre a le numéro $8.

Le registre cO_procid
Le registre procid est un registre en lecture seule contenant le numéro du processeur. Cet index « cablé »
est utilisé par le noyau du systeme d?exploitation. Il n'a de sens que pour gérer des architectures
multiprocesseurs (multicore).
Ce registre possede le numéro $15.

Le registre cO_count
Le registre count de cO est le registre en lecture seulement contenant le nombre de cycles exécutés depuis
[?initialisation du processeur.
Ce registre possede le numéro $16.

3. Adressage de la me?moire

L?espace d'adressage de la mémoire est découpé en 2 parties identifiés par le bit de poids fort de 1?adresse (bit
n°31). Quand le processeur est en mode kernel alors les 2 parties (protégée et non protégée) sont accessibles. Quand
le processeur est en mode user alors seule la partie protégée est accessible.

bit n°31 de 1l'adresse = 0 partie non protégée utilisable dans tous les modes du processeur
destinée au programme de l'utilisateur
bit n°31 de 1l'adresse = 1 partie protégée utilisable seulement en mode kernel

réservée au noyau du systeme d'exploitation

3. Adressage de la me?moire 2

Quand le processeur est en mode utilisateur, si une instruction essaie d'accéder a la mémoire avec une adresse de la
partie systeme alors le processeur part en exception, c'est-a-dire que le programme fautif est dérouté vers le noyau
du systeme d'exploitation.

4. Instructions protégées

La version du MIPS32 que nous utilisons possede une cinquantaine d'instructions, il y a les instructions standards
utilisables quel que soit le mode d'exécution du processeur et il y a les instructions protégées qui ne sont utilisables
qu'en mode kernel. Les instructions standards sont présentées dans le document sur |'architecture et I'assembleur en
mode user. Ce sont les instructions arithmétiques/logiques entre registres, les instructions de branchement, les
instructions de lecture et écriture mémoire et l'instruction syscall. Nous utilisons 3 instructions protégées
(utilisables seulement en mode kernel) : mt cO, mfcO et eret.

mtcO etmfcO

signifient respectivement Move-To-Coprocessor-0 et Move-From-Coprocessor-0. Comme leur nom
lI'indique, elles permettent de déplacer le contenu des registres entre les bancs (GPR et Copro).

instruction comportement dans le

Remarques
assembleur processeur

SC0=1258,%$12,513,$14,5$150U
mtc0 $GPR, $CO0 COPRO.0(sC0)?GPR (SGPR) $16

SGPR=50...$31

$CO0=$8,$12,$13,%$14,3$150U

mfc0 $GPR, $CO GPR ($GPR)? COPRO.0($C0) $16
SGPR=50..$31

eret
signifie Exception-RETurn, c'est-a-dire refour d'une exception. Nous allons voir en détail ce que cela

signifie dans la section 5. Pour le moment, comprenez que c'est I'unique instruction permettant de sortir du
mode kernel pour entrer dans le mode user.

instruction comportement dans le

Remarques
assembleur processeur
copie le contenu du registre CO_EPC
14
eret PC?7CO_EPC Elflr?s_ l$e re)istre PC et met O dans le bit
CO_SR.EXL?0 r g

du registre CO_SR (C0_$12)

Codage des instructions protégées

Elles utilisent toutes le format R avec le champ OPCOD a la valeur COPRO (c.-a-d. 00010000).
L'instruction est alors codée avec les bits 25 et 23 de l'instruction (ces deux bits sont dans le champs RS).
Remarquez que ERET a deux codages.

lopcoD [rRs [RT|RD [sH|FUNC]|

4. Instructions protégées

31252015105 0O

INS 23

[INS 25]0]1]

0 MFCO MTCO1 ERET

Pour les instructions mt c0 et mfc0, le premier argument est mis dans le champs RT et le second
argument est mis dans le champs RD.

instruction comportement commentaire

Recopie le contenu du registre GPR n°RT

9
mtc0 RT, RD CO_RD ?RT dans le registre du coprocesseur 0 n°RD

mfc0 RT, RD RT ? CO_RD Recopie le .contenu du Oregistre du coprocesseur 0 n°RD
dans le registre GPR n°RT

Par exemple:

mtcO $5, $14:0PCOD=010000",lebit INS 25esta Oetlebit INS 23 esta l.

TmtcO $5, $14=0b010000I0.1..1S$51814l..... lo.o.. ..

?TmtcO $5, $14=0b01000010.1..l00101l01110l..... lo.o.. ..

? . peut étre remplacé par Oou 1, utilisons 0

TmtcO $5, $14=0b0100001001001001011011101000001000000

?TmtcO $5, $14=0b0100 0000 1000 0101 0111 0000 0000 0000

Tmtc0 $5, $14=0x40857000

5. Exceptions / Interruptions / Appels syste?me

Il existe quatre types d'éveénements qui peuvent interrompre 1'exécution "normale" d'un programme:

® les exceptions ;

e les interruptions ;

¢ les appels systeme (instructions syscall)
e le signal RESET.

Dans tous ces cas, le principe général consiste a dérouter le programme vers un code spécial (appelée noyau du
systeme d'exploitation) qui s'exécute en mode systeme et a qui il faut transmettre les informations minimales lui
permettant de traiter le probleme.

5.1. Exceptions

Les exceptions sont des évenements "anormaux” détectés au moment de 1'exécution des instructions. Ils sont le plus
souvent liés a une erreur de programmation qui empéche 1'exécution correcte de l'instruction en cours. La détection
d'une exception entraine l'arrét immédiat de I'exécution de l'instruction fautive. Ainsi, on assure que l'instruction
fautive ne modifie pas la valeur d'un registre visible ou de la mémoire. Les exceptions ne sont évidemment pas
masquables, cela signifie que 1'on ne peut pas interdire leur gestion. Il y a 7 types d'exception dans cette version du
processeur MIPS32 :

5. Exceptions / Interruptions / Appels syste?me 4

ADEL
Adresse illégale en lecture : adresse non alignée ou se trouvant dans la partie systeme alors que le
processeur est en mode utilisateur.

ADES
Adresse illégale en écriture : adresse non alignée ou acces a une donnée dans le partie systeme alors que le
processeur est en mode utilisateur.

DBE
Data Bus Erreur : le systtme mémoire signale une erreur en activant le signal BERR a la suite d'un acces de
donnée a une adresse qui n'a pas de case mémoire associée. On dit qu'elle n'est pas mappée. Cette erreur est
aussi nommée erreur de segmentation (‘segmentation fault” en anglais).

IBE
Instruction Bus Erreur : le systéme mémoire signale une erreur en activant le signal BERR a I'occasion
d'une lecture instruction. C'est le méme probleme que pour DBE mais cela concerne les instructions.

OVF
Dépassement de capacité : lors de 1'exécution d'une instruction arithmétique (ADD ou ADDI), le résultat ne
peut étre représenté sur 32 bits. Par exemple, la somme de 2 nombres positifs donne un nombre négatif.

RI
OPCOD illégal : I'OPCOD ne correspond a aucune instruction connue, il s'agit probablement d'un
branchement dans une zone mémoire ne contenant pas du code exécutable.

CPU

Coprocesseur inaccessible : tentative d'exécution d'une instruction privilégiée (mt c0, mfc0, eret) alors
que le processeur est en mode utilisateur.

Dans tous les cas, le processeur doit passer en mode systeme et se brancher au noyau du systeme d'exploitation
implanté a I'adresse 0x80000180. Apres avoir identifié que la cause est une exception (en examinant le contenu
du registre cO0_cause), le noyau se branche alors au gestionnaire d?exception. Ici, toutes les exceptions sont
fatales, il n'y a pas de reprise de I'exécution de 1'application contenant l'instruction fautive. Le processeur doit
cependant transmettre au gestionnaire d'exceptions l'adresse de l'instruction fautive et indiquer dans le registre de
cause le type d'exception détectée. Lorsqu?il détecte une exception, le matériel doit donc:

¢ sauvegarder PC (l'adresse de l'instruction fautive) dans le registre cO_epc ;
e passer en mode systeme et masquer les interruptions dans cO_sr ;

¢ sauvegarder éventuellement 1?adresse fautive dans c0_bar;

e &crire le type de l'exception dans le registre cO_cause;

e brancher a I'adresse 0x80000180.

5.2 Interruptions

Les requétes d'interruption matérielles sont des événements asynchrones provenant des controleurs de
périphériques. Elles peuvent étre masquées (ignorées) par le processeur. Le processeur MIPS32 possede 6 lignes
d'interruptions externes qui peuvent étre masquées globalement ou individuellement. L'activation d'une de ces
lignes est une requéte d'interruption. Elles sont notifiées dans le registre cO_cause et, si elles ne sont pas
masquées, elles sont prises en compte a la fin de 1'exécution de l'instruction en cours. Cette requéte doit €tre
maintenue active par le contrdleur de périphérique tant qu'elle n'a pas été prise en compte par le processeur.

Le processeur doit alors passer alors en mode systeme et se brancher au noyau du systeme d'exploitation. Apres
avoir identifié que la cause est une interruption (en examinant le contenu du registre cO_cause), le noyau se
branche au gestionnaire d?interruption qui doit appeler une fonction appropriée pour le traitement de la requéte.
Cette fonction est appelée routine d?interruption ou ISR (pour Interrupt Service Routine). Comme il faut reprendre

5.1. Exceptions 5

I'exécution de l'application en cours a la fin du traitement de l'interruption, il faut sauvegarder une adresse de retour.
Lorsqu?il recoit une requéte d?interruption non masquée, le matériel doit donc :

¢ sauvegarder PC+4 (l'adresse de retour) dans le registre cO_epc ;
e passer en mode systeéme et masquer les interruptions dans cO_sr ;
e &crire qu'il s'agit d'une interruption dans le registre c0_cause ;

® brancher a I'adresse 0x80000180program.

En plus des 6 lignes d'interruption matérielles, le processeur MIPS32 possede un mécanisme d'interruption
logicielle: 11 existe 2 bits dans le registre de cause cO_cause qui peuvent étre écrits par le logiciel au moyen de
l'instruction privilégiée mt c0. La mise a 1 de ces bits déclenche le mé&me traitement que les requétes d'interruptions
externes, s'ils ne sont pas masqués.

5.3 Appels systeme: instruction syscall

L'instruction syscall permet a une application de l'utilisateur de demander un service au noyau du systeéme
d'exploitation, comme par exemple effectuer une entrée-sortie. Le code définissant le type de service demandé au
systeme, et d'éventuels parametres doivent avoir été préalablement rangés dans des registres généraux. Quand le
processeur exécute l'instruction syscall, il passe en mode ''kernel'' et se branche au
noyau. Apres avoir identifié que la cause est un appel systéme (en examinant
le contenu du registrecO_cause), le noyau se branche au gestionnaire d?appels
systéme. L'instruction syscall’ réalise les opérations suivantes :

e sauvegarder PC (I'adresse de 1'instruction) dans le registre c0_epc (1?7adresse de retour est PC + 4) ;
e passer en mode systeéme et masquage des interruptions dans cO_sr: cO_sr.'EXL ? 17;

e &crire la cause du déroutement dans le registre cO_cause (ici cO_cause.code ? 8);

¢ brancher a l'adresse 0x80000180.

4) Sighal RESET

Le processeur possede également une entrée RESET dont l'activation pendant au moins un cycle entraine le
branchement inconditionnel du code de démarrage de I'ordinateur (code de boot). Ce code, implanté & 1?adresse
0xBFC00000 doit principalement charger le code du noyau du systeme d?exploitation dans la mémoire depuis le
disque ou le réseau et se brancher a la fonction d'initialisation du noyau. Cette fonction initialise les controleurs de
périphériques et les structures internes du noyau et, a la fin elle se branche a la premiere application utilisateur.
Dans notre modele d'ordinateur, le noyau est pré-chargé en mémoire et le code de boot se contente d'appeler la
fonction d'initialisation.

Cette requéte est tres semblable a une septieme ligne d'interruption externe avec les différences importantes
suivantes:

e clle n'est pas masquable :
¢ il n'est pas nécessaire de sauvegarder une adresse de retour.
® e gestionnaire de reset est implanté a I'adresse "0xBFC00000".

Dans ce cas, le processeur doit :

e passer en mode systeme et masque les interruptions dans SR
¢ brancher a I'adresse "0xBFC00000"

5.2 Interruptions 6

5) Sortie du noyau

Avant de reprendre 1'exécution de 'application qui a effectué un appel systeme (instructions syscall) ou qui a été
interrompu par une interruption, il est nécessaire d'exécuter l'instruction eret. Cette instruction modifie le contenu
du registre c0_sr, et effectue un branchement a 17adresse contenue dans le registre c0_epc.

6) Gestion du registre d'état c0_sr

Le registre cO_sr contient I'état du processeur. Cela concerne son comportement vis-a-vis des requétes
d'interruptions, c'est-a-dire les masques des interruptions matérielles et logicielles, et le mode d'exécution, mode
systeme (kernel) ou en mode utilisateur (user).

e La figure suivante présente le contenu des 16 bits de poids faible du registre c0_sr. Cette version du
MIPS32 n?utilise que 12 bits:
ltM7:01{0[0o]o|um o [ERL |EXL[IE|
158 76543210

0 = toutes les interruptions sont masquées
IE Interrupt Enable 1 = interruptions non-masquées mais elles peuvent 1'étre avec
IM[7:0]
0 = aucun effet sur le processeur
1 = le processeur vient d'entrer dans le noyau

EXL Exception Level . .
p et donc le processeur est en mode kernel et interruptions
massquées
ERL Error Level 1 = apres le signal reset ou certaines erreurs de la mémoire
0 = mode d'exécution kernel
UM User Mode NS
1 = mode d'exécution user
Masques pour les six lignes d?interruption matérielles (bits IM[7:21])
IM![7:0]
individuels et pour les 2 interruptions logicielles (bits IM[1:0])

® Quelques remarques :

¢ Le processeur a le droit d?accéder aux ressources protégées (registres du coprocessor 0 c0), et aux
adresses mémoires >= 0x80000000) si et seulement si le bit UM vaut 0, ou si 17un des deux bits
ERL et EXL vaut 1.

¢ Les interruptions sont autorisées si et seulement si le bit TE vaut 1, et si les deux bits ERL et EXL
valent 00, et si le bit correspondant de IM vaut 1.

¢ Les trois types d?événements qui déclenchent le branchement au noyau: (interruptions, exceptions
et appels systeme) forcent le bit EXL a 1, ce qui masque les interruptions et autorise 17acces aux
ressources protégées.

¢ L?activation du signal RESET qui force le branchement au code de boot force le bit ERL a 1, ce
qui masque les interruptions et autorise 17acces aux ressources protégées.

¢ L%instruction eret force le bit EXL a O.

¢ Lors de 17activation du RESET :
¢ c0_sr contient donc la valeur 0x0004 (0b0000000000000100).
¢ Pour exécuter un programme utilisateur en mode protégé, avec interruptions activées, il doit
contenir la valeur OxFF11.

5) Sortie du noyau 7

¢ Le noyau doit écrire la valeur 0xFF13 dans cO_sx et 17adresse de la premiere fonction du
programme utilisateur dans cO_epc avant d?appeler 1?instruction eret.

7) Gestion du registre de cause c0_cause

Le registre cO_cause contient trois champs. Les 4 bits du champ XCODE [3: 0] définissent la cause de I'appel du
noyau. Les 6 bits du champ TRQ[5: 0] représentent I'état des lignes d'interruption externes au moment de 1'appel
su noyau. Les 2 bits SWI [1:0] représentent les requétes d'interruption logicielle.

e La figure suivante montre le format du registre de cause CR :
[1IRQ[5:07 [swir1:01|0]0|xcoDE[3:01|0]0]
15 10 9876543210

¢ Les valeurs possibles du champ XCODE sont les suivantes :

0000 INT Interruption

0001 Inutilisé
0010 Inutilisé
0011 Inutilisé

0100 ADEL Adresse illégale en lecture
0101 ADES Adresse illégale en écriture
0110 IBE Bus erreur sur acces instruction
0111 DBE Bus erreur sur acces donnée
1000 SYS Appel systeme (syscall)
1001 BP Point d'arrét (break)

1010 RI OPCOD illégal

1011 CPU Coprocesseur inaccessible
1100 OVF Overflow arithmétique

1101 Inutilisé
1110 Inutilisé
1111 Inutilisé

6) Gestion du registre d'état cO_sr 8

