
1. Introduction1.
2. Registres protégés utilisables seulement en mode kernel2.
3. Adressage de la me?moire3.
4. Instructions protégées4.
5. Exceptions / Interruptions / Appels syste?me

5.1. Exceptions1.
5.2 Interruptions2.
5.3 Appels système: instruction syscall

4) Signal RESET1.
5) Sortie du noyau2.
6) Gestion du registre d'état c0_sr3.
7) Gestion du registre de cause c0_cause4.

3.

5.

Documentation MIPS Architecture et
assembleur (mode kernel)

1. Introduction
Ce document est la suite du document Documentation MIPS32 architecture et assembleur (mode user) (Ce
document est tiré du document initialement écrit par Alain Greiner).

Le MIPS supporte deux modes de fonctionnement utilisateur (user) et système (kernel).

Dans le mode user, certaines régions de la mémoire et certains registres du processeur sont protégés et donc
inaccessibles. C'est dans ce mode que s'exécute les applications.

•

Dans le mode kernel, toutes les ressources sont accessibles, c'est-à-dire toute la mémoire et tous les
registres. Dans ce mode, toutes les instructions sont autorisées, à la fois les instructions standards (add,
or, lw, mul, etc.), mais aussi des instructions protégées qui vont permettre de contrôler l'état de
fonctionnement du processeur. C'est dans ce mode que s'exécute le noyau du système d'exploitation.

•

Ce document détaille les éléments de l'architecture du processeur et du langage d'assemblage spécifique au mode
kernel.

2. Registres protégés utilisables seulement en mode
kernel
En mode kernel, tous les registres sont accessibles, à la fois les registres non protégés et aussi des registres
protégés. Pour rappel, les registres non protégés sont les GPR ($0 à $31), le registre PC(accessible implicitement
avec les instructions de branchement) et les registres HI et LO. Les registres protégés sont destinés au calcul alors
que les registres protégés sont destinés au contrôle de l'état du processeur.

L'architecture du MIPS32 définit 32 registres protégés, numérotés de $0 à $31, c'est-à-dire comme les registres
GPR mais ils ont des instructions d'accès spécifiques. En effet, ces registres protégés ne sont accessibles que par
des instructions protégées présentées dans la section 4.

2. Registres protégés utilisables seulement en mode kernel 1

Ces registres appartiennent au "coprocesseur système" n°0 (appélé aussi c0 pour Coprocessor 0). Dans cette
version du processeur MIPS32, il y en a 6. Ils sont tous utilisés par le système d?exploitation pour la gestion des
interruptions, des exceptions et des appels système. Dans ce document, nous ferons précéder le numéro du registre
protégé par cO_ afin de lever l'ambiguïtés.

Le registre c0_sr
Le registre sr de c0 est le registre d'état (Status Register). Il contient en particulier le bit qui définit le
mode d'exécution du processeur: user ou kernel, ainsi que les bits de masquage des interruptions.
Ce registre a le numéro $12.

Le registre c0_cause
Le registre cause de c0 est le registre de cause (Cause Register). En cas d'interruption, d'exception ou
d'appel système, le programme en cours d'exécution est dérouté vers le noyau du système d'exploitation. Le
contenu de c0_cause contient un code qui définit la cause d'appel du noyau.
Ce registre a le numéro $13.

Le registre c0_epc
Le registre epc de `c0 est le registre d'exception (Exception Program Counter). Il contient : (i) soit
l'adresse de retour (PC + 4) en cas d'interruption, (ii) soit l'adresse de l'instruction courante (PC) en cas
d'exception ou d'appel système.
Ce registre a le numéro $14.

Le registre c0_bar
Le registre bar de c0 est le registre d'adresse illégale (Bad Address Register). En cas d'exception de type
adresse illégale, il contient la valeur de l'adresse mal formée. Une adresse est illégale, par exemple, si vous
tentez une lecture de mot (lw) a une adresse non-alignée (non multiple de 4) ou si vous tentez une lecture
en dehors des segments d'adresse où se trouve de la mémoire.
Ce registre a le numéro $8.

Le registre c0_procid
Le registre procid est un registre en lecture seule contenant le numéro du processeur. Cet index « cablé »
est utilisé par le noyau du système d?exploitation. Il n'a de sens que pour gérer des architectures
multiprocesseurs (multicore).
Ce registre possède le numéro $15.

Le registre c0_count
Le registre count de c0 est le registre en lecture seulement contenant le nombre de cycles exécutés depuis
l?initialisation du processeur.
Ce registre possède le numéro $16.

3. Adressage de la me?moire
L?espace d'adressage de la mémoire est découpé en 2 parties identifiés par le bit de poids fort de l?adresse (bit
n°31). Quand le processeur est en mode kernel alors les 2 parties (protégée et non protégée) sont accessibles. Quand
le processeur est en mode user alors seule la partie protégée est accessible.

bit n°31 de l'adresse = 0 partie non protégée utilisable dans tous les modes du processeur
 destinée au programme de l'utilisateur
bit n°31 de l'adresse = 1 partie protégée utilisable seulement en mode kernel
 réservée au noyau du système d'exploitation

3. Adressage de la me?moire 2

Quand le processeur est en mode utilisateur, si une instruction essaie d'accéder à la mémoire avec une adresse de la
partie système alors le processeur part en exception, c'est-à-dire que le programme fautif est dérouté vers le noyau
du système d'exploitation.

4. Instructions protégées
La version du MIPS32 que nous utilisons possède une cinquantaine d'instructions, il y a les instructions standards
utilisables quel que soit le mode d'exécution du processeur et il y a les instructions protégées qui ne sont utilisables
qu'en mode kernel. Les instructions standards sont présentées dans le document sur l'architecture et l'assembleur en
mode user. Ce sont les instructions arithmétiques/logiques entre registres, les instructions de branchement, les
instructions de lecture et écriture mémoire et l'instruction syscall. Nous utilisons 3 instructions protégées
(utilisables seulement en mode kernel) : mtc0, mfc0 et eret.

mtc0 et mfc0

signifient respectivement Move-To-Coprocessor-0 et Move-From-Coprocessor-0. Comme leur nom
l'indique, elles permettent de déplacer le contenu des registres entre les bancs (GPR et Copro).

instruction
assembleur

comportement dans le
processeur Remarques

mtc0 $GPR, $C0 COPRO. 0 ($C0) ? GPR ($GPR)
$C0 = $8, $12, $13, $14, $15 OU
$16
$GPR = $0 ... $31

mfc0 $GPR, $C0 GPR ($GPR) ? COPRO. 0 ($C0)
$C0 = $8, $12, $13, $14, $15 OU
$16
$GPR = $0 ... $31

eret

signifie Exception-RETurn, c'est-à-dire retour d'une exception. Nous allons voir en détail ce que cela
signifie dans la section 5. Pour le moment, comprenez que c'est l'unique instruction permettant de sortir du
mode kernel pour entrer dans le mode user.

instruction
assembleur

comportement dans le
processeur Remarques

eret PC ? CO_EPC
C0_SR.EXL ? 0

copie le contenu du registre C0_EPC
(C0_$14)
dans le registre PC et met 0 dans le bit
EXL
du registre C0_SR (C0_$12)

Codage des instructions protégées

Elles utilisent toutes le format R avec le champ OPCOD à la valeur COPRO (c.-à-d. 0b010000).
L'instruction est alors codée avec les bits 25 et 23 de l'instruction (ces deux bits sont dans le champs RS).
Remarquez que ERET à deux codages.

OPCOD RS RT RD SH FUNC

4. Instructions protégées 3

31 25 20 15 10 5 0

 INS 23
INS 25 0 1

0 MFC0 MTC01 ERET

Pour les instructions mtc0 et mfc0, le premier argument est mis dans le champs RT et le second
argument est mis dans le champs RD.

instruction comportement commentaire

mtc0 RT, RD C0_RD ? RT Recopie le contenu du registre GPR n°RT
dans le registre du coprocesseur 0 n°RD

mfc0 RT, RD RT ? C0_RD Recopie le contenu du registre du coprocesseur 0 n°RD
dans le registre GPR n°RT

Par exemple:
mtc0 $5, $14 : OPCOD = 010000", le bit INS 25 est à 0 et le bit INS 23 est à 1.
? mtc0 $5, $14 = 0b010000|0.1..| $5 | $14|.....|......
? mtc0 $5, $14 = 0b010000|0.1..|00101|01110|.....|......
? . peut être remplacé par 0ou 1, utilisons 0
? mtc0 $5, $14 = 0b010000|00100|00101|01110|00000|000000
? mtc0 $5, $14 = 0b0100 0000 1000 0101 0111 0000 0000 0000
? mtc0 $5, $14 = 0x40857000

5. Exceptions / Interruptions / Appels syste?me
Il existe quatre types d'évènements qui peuvent interrompre l'exécution "normale" d'un programme:

les exceptions ;•
les interruptions ;•
les appels système (instructions syscall)•
le signal RESET.•

Dans tous ces cas, le principe général consiste à dérouter le programme vers un code spécial (appelée noyau du
système d'exploitation) qui s'exécute en mode système et à qui il faut transmettre les informations minimales lui
permettant de traiter le problème.

5.1. Exceptions

Les exceptions sont des évènements "anormaux" détectés au moment de l'exécution des instructions. Ils sont le plus
souvent liés à une erreur de programmation qui empêche l'exécution correcte de l'instruction en cours. La détection
d'une exception entraîne l'arrêt immédiat de l'exécution de l'instruction fautive. Ainsi, on assure que l'instruction
fautive ne modifie pas la valeur d'un registre visible ou de la mémoire. Les exceptions ne sont évidemment pas
masquables, cela signifie que l'on ne peut pas interdire leur gestion. Il y a 7 types d'exception dans cette version du
processeur MIPS32 :

5. Exceptions / Interruptions / Appels syste?me 4

ADEL
Adresse illégale en lecture : adresse non alignée ou se trouvant dans la partie système alors que le
processeur est en mode utilisateur.

ADES
Adresse illégale en écriture : adresse non alignée ou accès à une donnée dans le partie système alors que le
processeur est en mode utilisateur.

DBE
Data Bus Erreur : le système mémoire signale une erreur en activant le signal BERR à la suite d'un accès de
donnée à une adresse qui n'a pas de case mémoire associée. On dit qu'elle n'est pas mappée. Cette erreur est
aussi nommée erreur de segmentation ('segmentation fault` en anglais).

IBE
Instruction Bus Erreur : le système mémoire signale une erreur en activant le signal BERR à l'occasion
d'une lecture instruction. C'est le même problème que pour DBE mais cela concerne les instructions.

OVF
Dépassement de capacité : lors de l'exécution d'une instruction arithmétique (ADD ou ADDI), le résultat ne
peut être représenté sur 32 bits. Par exemple, la somme de 2 nombres positifs donne un nombre négatif.

RI
OPCOD illégal : l'OPCOD ne correspond à aucune instruction connue, il s'agit probablement d'un
branchement dans une zone mémoire ne contenant pas du code exécutable.

CPU
Coprocesseur inaccessible : tentative d'exécution d'une instruction privilégiée (mtc0, mfc0, eret) alors
que le processeur est en mode utilisateur.

Dans tous les cas, le processeur doit passer en mode système et se brancher au noyau du système d'exploitation
implanté à l'adresse 0x80000180. Après avoir identifié que la cause est une exception (en examinant le contenu
du registre c0_cause), le noyau se branche alors au gestionnaire d?exception. Ici, toutes les exceptions sont
fatales, il n'y a pas de reprise de l'exécution de l'application contenant l'instruction fautive. Le processeur doit
cependant transmettre au gestionnaire d'exceptions l'adresse de l'instruction fautive et indiquer dans le registre de
cause le type d'exception détectée. Lorsqu?il détecte une exception, le matériel doit donc:

sauvegarder PC (l'adresse de l'instruction fautive) dans le registre c0_epc ;•
passer en mode système et masquer les interruptions dans c0_sr ;•
sauvegarder éventuellement l?adresse fautive dans c0_bar;•
écrire le type de l'exception dans le registre c0_cause;•
brancher à l'adresse 0x80000180.•

5.2 Interruptions

Les requêtes d'interruption matérielles sont des évènements asynchrones provenant des contrôleurs de
périphériques. Elles peuvent être masquées (ignorées) par le processeur. Le processeur MIPS32 possède 6 lignes
d'interruptions externes qui peuvent être masquées globalement ou individuellement. L'activation d'une de ces
lignes est une requête d'interruption. Elles sont notifiées dans le registre c0_cause et, si elles ne sont pas
masquées, elles sont prises en compte à la fin de l'exécution de l'instruction en cours. Cette requête doit être
maintenue active par le contrôleur de périphérique tant qu'elle n'a pas été prise en compte par le processeur.

Le processeur doit alors passer alors en mode système et se brancher au noyau du système d'exploitation. Après
avoir identifié que la cause est une interruption (en examinant le contenu du registre c0_cause), le noyau se
branche au gestionnaire d?interruption qui doit appeler une fonction appropriée pour le traitement de la requête.
Cette fonction est appelée routine d?interruption ou ISR (pour Interrupt Service Routine). Comme il faut reprendre

5.1. Exceptions 5

l'exécution de l'application en cours à la fin du traitement de l'interruption, il faut sauvegarder une adresse de retour.
Lorsqu?il reçoit une requête d?interruption non masquée, le matériel doit donc :

sauvegarder PC+4 (l'adresse de retour) dans le registre c0_epc ;•
passer en mode système et masquer les interruptions dans c0_sr ;•
écrire qu'il s'agit d'une interruption dans le registre c0_cause ;•
brancher à l'adresse 0x80000180program.•

En plus des 6 lignes d'interruption matérielles, le processeur MIPS32 possède un mécanisme d'interruption
logicielle: Il existe 2 bits dans le registre de cause c0_cause qui peuvent être écrits par le logiciel au moyen de
l'instruction privilégiée mtc0. La mise à 1 de ces bits déclenche le même traitement que les requêtes d'interruptions
externes, s'ils ne sont pas masqués.

5.3 Appels système: instruction syscall

L'instruction syscall permet à une application de l'utilisateur de demander un service au noyau du système
d'exploitation, comme par exemple effectuer une entrée-sortie. Le code définissant le type de service demandé au
système, et d'éventuels paramètres doivent avoir été préalablement rangés dans des registres généraux. Quand le
processeur exécute l'instruction syscall, il passe en mode ''kernel'' et se branche au
noyau. Après avoir identifié que la cause est un appel système (en examinant
le contenu du registre c0_cause), le noyau se branche au gestionnaire d?appels
système. L'instruction syscall` réalise les opérations suivantes :

sauvegarder PC (l'adresse de l'instruction) dans le registre c0_epc (l?adresse de retour est PC + 4) ;•
passer en mode système et masquage des interruptions dans c0_sr : c0_sr.'EXL ? 1`;•
écrire la cause du déroutement dans le registre c0_cause (ici c0_cause.code ? 8);•
brancher à l'adresse 0x80000180.•

4) Signal RESET

Le processeur possède également une entrée RESET dont l'activation pendant au moins un cycle entraîne le
branchement inconditionnel du code de démarrage de l'ordinateur (code de boot). Ce code, implanté à l?adresse
0xBFC00000 doit principalement charger le code du noyau du système d?exploitation dans la mémoire depuis le
disque ou le réseau et se brancher à la fonction d'initialisation du noyau. Cette fonction initialise les contrôleurs de
périphériques et les structures internes du noyau et, à la fin elle se branche à la première application utilisateur.
Dans notre modèle d'ordinateur, le noyau est pré-chargé en mémoire et le code de boot se contente d'appeler la
fonction d'initialisation.

Cette requête est très semblable à une septième ligne d'interruption externe avec les différences importantes
suivantes:

elle n'est pas masquable :•
il n'est pas nécessaire de sauvegarder une adresse de retour.•
le gestionnaire de reset est implanté à l'adresse "0xBFC00000".•

Dans ce cas, le processeur doit :

passer en mode système et masque les interruptions dans SR•
brancher à l'adresse "0xBFC00000"•

5.2 Interruptions 6

5) Sortie du noyau

Avant de reprendre l'exécution de l'application qui a effectué un appel système (instructions syscall) ou qui a été
interrompu par une interruption, il est nécessaire d'exécuter l'instruction eret. Cette instruction modifie le contenu
du registre c0_sr, et effectue un branchement à l?adresse contenue dans le registre c0_epc.

6) Gestion du registre d'état c0_sr

Le registre c0_sr contient l'état du processeur. Cela concerne son comportement vis-à-vis des requêtes
d'interruptions, c'est-à-dire les masques des interruptions matérielles et logicielles, et le mode d'exécution, mode
système (kernel) ou en mode utilisateur (user).

La figure suivante présente le contenu des 16 bits de poids faible du registre c0_sr. Cette version du
MIPS32 n?utilise que 12 bits:
IM[7:0] 0 0 0 UM 0 ERL EXL IE
 15 8 7 6 5 4 3 2 1 0

•

IE Interrupt Enable
0 = toutes les interruptions sont masquées
1 = interruptions non-masquées mais elles peuvent l'être avec
IM[7:0]

EXL Exception Level

0 = aucun effet sur le processeur
1 = le processeur vient d'entrer dans le noyau
et donc le processeur est en mode kernel et interruptions
massquées

ERL Error Level 1 = après le signal reset ou certaines erreurs de la mémoire

UM User Mode 0 = mode d'exécution kernel
1 = mode d'exécution user

IM![7:0]
Masques
individuels

pour les six lignes d?interruption matérielles (bits IM[7:2])
et pour les 2 interruptions logicielles (bits IM[1:0])

Quelques remarques :
Le processeur a le droit d?accéder aux ressources protégées (registres du coprocessor 0 c0), et aux
adresses mémoires >= 0x80000000) si et seulement si le bit UM vaut 0, ou si l?un des deux bits
ERL et EXL vaut 1.

♦

Les interruptions sont autorisées si et seulement si le bit IE vaut 1, et si les deux bits ERL et EXL
valent 00, et si le bit correspondant de IM vaut 1.

♦

Les trois types d?événements qui déclenchent le branchement au noyau: (interruptions, exceptions
et appels système) forcent le bit EXL à 1, ce qui masque les interruptions et autorise l?accès aux
ressources protégées.

♦

L?activation du signal RESET qui force le branchement au code de boot force le bit ERL à 1, ce
qui masque les interruptions et autorise l?accès aux ressources protégées.

♦

L?instruction eret force le bit EXL à 0.♦

•

Lors de l?activation du RESET :
c0_sr contient donc la valeur 0x0004 (0b0000000000000100).♦
Pour exécuter un programme utilisateur en mode protégé, avec interruptions activées, il doit
contenir la valeur 0xFF11.

♦

•

5) Sortie du noyau 7

Le noyau doit écrire la valeur 0xFF13 dans c0_sr et l?adresse de la première fonction du
programme utilisateur dans c0_epc avant d?appeler l?instruction eret.

♦

7) Gestion du registre de cause c0_cause

Le registre c0_cause contient trois champs. Les 4 bits du champ XCODE[3:0] définissent la cause de l'appel du
noyau. Les 6 bits du champ IRQ[5:0] représentent l'état des lignes d'interruption externes au moment de l'appel
su noyau. Les 2 bits SWI[1:0] représentent les requêtes d'interruption logicielle.

La figure suivante montre le format du registre de cause CR :
IRQ[5:0] SWI[1:0] 0 0 XCODE[3:0] 0 0
 15 10 9 8 7 6 5 4 3 2 1 0

•

Les valeurs possibles du champ XCODE sont les suivantes :•

0000 INT Interruption
0001 Inutilisé
0010 Inutilisé
0011 Inutilisé
0100 ADEL Adresse illégale en lecture
0101 ADES Adresse illégale en écriture
0110 IBE Bus erreur sur accès instruction
0111 DBE Bus erreur sur accès donnée
1000 SYS Appel système (syscall)
1001 BP Point d'arrêt (break)
1010 RI OPCOD illégal
1011 CPU Coprocesseur inaccessible
1100 OVF Overflow arithmétique
1101 Inutilisé
1110 Inutilisé
1111 Inutilisé

6) Gestion du registre d'état c0_sr 8

