
1 Project context

% 1. CONTEXTE ET POSITIONNEMENT DU PROJET

% (1 page maximum) Pr�esentation g�en�erale du probl�eme qu'il est propos�e de traiter

% dans le projet et du cadre de travail (recherche fondamentale, industrielle ou

% d�eveloppement exp�erimental).

High Performance Computing (HPC) consists in accelerating applications.
This topic is investigated since 80s using Applications Speci�c Integrated
Circuits (ASIC), Digital Signal Processing (DSP) and parallel computing on
multiprocessor machines or networks. More recently, since end of 90s, other
technologies appeared like Very Large Instruction Word (VLIW), processors
enhanced with costumized instructions (XXXpeci), System on Chip (SoC),
Multi-Processors SoC (MPSoC).
During these last decades HPC was reserved to major industrial companies
targetinh high volume market due to the design and fabrication costs. No-
wadays Field Programmable Gate Arrays (FPGA), like Virtex5 from Xilinx
and Stratix4 from Altera, can implement a SoC with multiple processors and
several coprocessors for less than 10K euros the piece. In addition, High Level
Synthesis (HLS) becomes more mature and allows to automize design and to
decrease drastically its cost in terms of man power. Thus, both FPGA and
HLS tends to spread over HPC for small companies targeting low volume
markets.

To get a good acceleration ratio designer has to take into account applica-
tion characteristics when it chooses one of the former HPC technologies. This
choice is not easy and in most cases designer has to try di�erent technologies
to retain the most adapted one. The objective of COACH project is to pro-
vide a framework to accelerate applications. Typically, the kind of targeted
application is an existing one running on PC. COACH help designer either to
migrate it into an embedded FPGA or to accelerate it by migrating critical
parts on FPGA plugged to the PC bus. COACH framework allows designer
to explore various software/hardware partitions of the target application, to
run timing and functional simulations and to generate automatically both
the software and the synthetisable description of the hardware. The main
topics of the project are :

{ PC/FPGA communication : COACH provides tools and communica-
tion schemes with their implementation helping user to split its appli-
cation in two parts (one running on the PC and the other running on
FPGA) and to evaluate the split e�ciency.

{ Design space exploration : It consists in analysing the application run-
nig on FPGA, de�ning the target technology (SoC, MPSoC, XXXpeci,

1



...) and hardware/software partitioning of tasks depending on techno-
logy choice. This exploration is driven basically by throughput and
latency criteria. Moreover power consumption can be considered in the
case of embedded systems.

{ Micro-architectural exploration : When hardware components are re-
quired, the HLS tools of the framework generate them automatically.
At this stage the framework provides various HLS tools allowing the
micro-architectural space design exploration. The exploration criteria
are also throughput, latency and power consumption.

{ Performance measurement : For each point of design space explora-
tion, metrics of criteria are available such as throughput, latency, po-
wer consumption, area, memory allocation and data locality. They are
evaluated using simulation, estimation or analysing methodologies.

{ Targeted hardware technology : COACH is independent of the FPGA
family. Every point of the design exploration space can be implemented
on any FPGA having the required resources. Basically, COACH handles
both Altera and Xilinx FPGA families.

COACH is the result of the will of several laboratory to unify their know
how and skills in the following domains : Operating system and hardware
communication (TIMA, SITI), SoC and MPSoC (LIP6 and TIMA), XXXpeci
(IRISA) and HLS (LIP6, Lab-STIC and LIP). The project objective is to
integrate these various domains into a unique free framework (licence ...)
masking as much as possible these domains and its di�erent tools to the
user.

1.1 Economical context and interest

% 1.1. CONTEXTE ET ENJEUX ECONOMIQUES ET SOCIETAUX

% (2 pages maximum)

% D�ecrire le contexte �economique, social, r�eglementaire. dans lequel se situe

% le projet en pr�esentant une analyse des enjeux sociaux, �economiques, environnementaux,

% industriels. Donner si possible des arguments chiffr�es, par exemple, pertinence et

% port�ee du projet par rapport �a la demande �economique (analyse du march�e, analyse des

% tendances), analyse de la concurrence, indicateurs de r�eduction de coûts, perspectives

% de march�es (champs d'application, .). Indicateurs des gains environnementaux, cycle

% de vie.

Microelectronics allow to integrate complicated functions into products, to
increase their commercial attractivity and to improve their competitivity.
Multimedia and communication sectors have taken advantage from microe-
lectronics facilities thanks to developpment of design methodologies and tools
for real time embedded systems. Many other sectors could bene�t from mi-
croelectronics if these methologies and tools are adapted to their features.

2



The Non Recurring Engineering (NRE) costs involded in designing and ma-
nufacturing an ASIC is very high. It costs several milliars of euros for IC
factory and several millions to fabricate a speci�c circuit. Consequently, it is
generally unfeasible to design and fabricate ASICs in low volumes and ICs
must be designed to cover a broad applications spectrum. This is achieved
by MPSoC (Multi-Processor System on Chip) with several application dedi-
cated coprocessors.
Today, FPGAs become important actors in the computational domain that
was originally dominated by microprocessors and ASICs. Just like micro-
processors FPGA based systems can be reprogrammed on a per-application
basis. At the same time, FPGAs o�er signi�cant performance bene�ts over
microprocessors implementation for a number of applications. Although these
bene�ts are still generally an order of magnitude less than equivalent ASIC
implementations, low costs (500 euros to 10K euros), fast time to market
and 
exibility of FPGAs make them an attractive choice for low-to-medium
volume applications. Since their introduction in the mid eighties, FPGAs
evolved from a simple, low-capacity gate array technology to devices (Altera
STRATIX III, Xilinx Virtex V) that provide a mix of coarse-grained data
path units, memory blocks, microprocessor cores, on chip A/D conversion,
and gate counts by millions. This high logic capacity allows to implement
complex systems like multi-processors platform with application dedicated
coprocessors. Using FPGA limits the NRE costs to design cost. This boosts
the developpment of methodologies and tools to automize design and reduce
its cost.

Nowadays, there are neither commercial nor free tools covering the whole
design process. For instance, With SOPC Builder from Altera, users can se-
lect and parameterize IP components from an extensive drop-down list of
communication, digital signal processor (DSP), microprocessor and bus in-
terface cores, as well as incorporate their own IP. Designers can then generate
a synthesized netlist, simulation test bench and custom software library that
re
ect the hardware con�guration. Nevertheless, SOPC Builder does not pro-
vide any facilities to synthesize coprocessors and to evaluate the platform at a
high design level. In addition, SOPC Builder is closed world since it is impos-
sible to migrate a SOPC Builder based design to other tools or devices family.
PICO [CITATION] and CATAPULT [CITATION] allow to synthesize copro-
cessors from a C++ description. Nevertheless, they can only deal with data
dominated applications and they do not handle the platform level. The Xi-
linx System Generator for DSP [http ://www.xilinx.com/tools/sysgen.htm]
is a plug-in to Simulink that enables designers to develop high-performance
DSP systems for Xilinx FPGAs. Designers can design and simulate a system
using MATLAB and Simulink. The tool will then automatically generate

3



synthesizable Hardware Description Language (HDL) code mapped to Xi-
linx pre-optimized algorithms. However, this tool targets only DSP based
algorithms.
Consequently, designer developping a HPC application needs to master for
example the communication between FPGA device and PC, SoCLib for de-
sign exploration, SOPC at the platform level, PICO for synthesizing the
data dominated coprocessors and Quartus for design implementation. This
requires an important tools interfacing e�ort and makes the design process
very complex and achievable only by designers skilled in various domains.
COACH project integrates all these tools in the same framework masking
them to the user. The objective is to allow pure software developpers to
realize HPC or embedded application.

The combination of the framework dedicated to software developpers and
FPGA target, allows small and even very small companies to propose acce-
lerating solutions for standard software applications with acceptable prices.
avoiding huge hardware investment in opposite to ASIC based solution.

The combination of the framework dedicated to software developpers and
FPGA target can open new markets to small and even very small companies.
Such markets we can state HPC (High Performance Computing) and embed-
ded applications. HPC consists in proposing accelerating solutions for stan-
dard software applications with acceptable prices, for example, DNA sequen-
cing recognization or DBMS acceleration. Embedded application consists in
implementing an application on a low power standalone device, for example
distributed intelligent sensors.
This new market may explose like it was done by micro-computing in eighties.
This success were due to the low cost of �rst micro-computers (compared to
main frame) and the advent of high level programming languages that allow
a high number of programmers to launch start-ups in software engineering.

1.2 Project position

% 1.2. POSITIONNEMENT DU PROJET

% (2 pages maximum)

% Pr�eciser :

% -positionnement du projet par rapport au contexte d�evelopp�e pr�ec�edemment :

% vis- �a-vis des projets et recherches concurrents, compl�ementaires ou ant�erieurs,

% des brevets et standards.

% - positionnement du projet par rapport aux axes th�ematiques de l'appel �a projets.

% - positionnement du projet aux niveaux europ�een et international.

The aim of this project is to propose an open-source framework for archi-

tecture synthesis targeting mainly �eld programmable gate array circuits

4



(FPGA). To evaluate the di�erent architectures, the project uses the proto-

typing platform of the SoCLIB ANR project (2006-2009).

-- POUVEZ VOUS CHACUN AJOUTER SVP (SI POSSIBLE) UNE LIGNE

-- REFERANT UN PROJET ANR OU EUROPEEN

* LAB-STIC

* LIP

* IRISA

* CITI

* TIMA

For High Level Synthesis (HLS), the project is based on a know-how acqui-

red over 15 years with GAUT project developped in Lab-STIC laboratory

and UGH project developped in LIP6 and TIMA laboratories. For architec-

ture synthesis, the project is based on a know-how acquired over 10 years

with the COSY European project (1998-2000) and the DISYDENT project

developped in LIP6.

-- A COMPLETER (COURT)

* For polyedric transformation and memory optimization ... LIP

* For XXXpeci IRISA

* For ... CITI

* For ... TIMA

The SoCLIB ANR platform were developped by 11 laboratories and 6
companies. It allows to describe hardware architectectures with shared me-
mory space and to deploy software applications on them to evaluate their
performance. The heart of this platform is a library containing simulation
models (in SystemC) of hardware IP cores such as processors, buses, net-
works, memories, IO controller. The platform provides also embedded ope-
rating systems and software/hardware communication components useful to
implement applications quickly. However, the synthesisable description of IPs
have to be provided by users.

5



This project enhances SoCLib by providing synthesisable VHDL of stan-

dard IPs. In addition, HLS tools such as UGH and GAUT allow to get auto-

matically a synthesisable description of an IP (coprocessor) from a sequential

algorithm.

-- A COMPLETER (COURT)

* XXXpeci tool such as ... IRISA

* ...

The di�erent points proposed in this project cover priorities de�ned by
the commission experts in the �eld of Information Technolgies Society (IST)
for Embedded systems : Concepts, methods and tools for designing systems
dealing with systems complexity and allowing to apply e�ciently applica-
tions and various products on embedded platforms, considering resources
constraints (delais, power, memory, etc.), security and quality services .
Our team aims at covering all the steps of the design 
ow of architecture
synthesis. Our project overcomes the complexity of using various synthesis
tools and description languages required today to design architectures.

2 Scienti�c and Technical Description

2.1 State of the art

% 2. DESCRIPTION SCIENTIFIQUE ET TECHNIQUE

% 2.1. �ETAT DE L'ART

% (3 pages maximum)

% D�ecrire le contexte et les enjeux scientifiques dans lequel se situe le projet

% en pr�esentant un �etat de l'art national et international dressant l'�etat des

% connaissances sur le sujet. Faire appara�̂tre d'�eventuels r�esultats pr�eliminaires.

% Inclure les r�ef�erences bibliographiques n�ecessaires en annexe 7.1.

Our project covers several critical domains in system design in order to
achieve high performance computing. Starting from a high level description
we aim at generating automatically both hardware and software components
of the system.

2.1.1 High Performance Computing

Accelerating high-performance computing (HPC) applications with �eld-
programmable gate arrays (FPGAs) can potentially improve performance.

6



However, using FPGAs presents signi�cant challenges [1]. First, the opera-
ting frequency of an FPGA is low compared to a high-end microprocessor.
Second, based on Amdahl law, HPC/FPGA application performance is unu-
sually sensitive to the implementation quality [2]. Finally, High-performance
computing programmers are a highly sophisticated but scarce resource. Such
programmers are expected to readily use new technology but lack the time
to learn a completely new skill such as logic design [3].
HPC/FPGA hardware is only now emerging and in early commercial stages,
but these techniques have not yet caught up. Thus, much e�ort is required
to develop design tools that translate high level language programs to FPGA
con�gurations.

[1] M.B. Gokhale et al., Promises and Pitfalls of Reconfigurable

Supercomputing, Proc. 2006 Conf. Eng. of Reconfigurable

Systems and Algorithms, CSREA Press, 2006, pp. 11-20;

http://nis-www.lanl.gov/~maya/papers/ersa06_gokhale_paper.

pdf.

[2] D. Buell, Programming Reconfigurable Computers: Language

Lessons Learned, keynote address, Reconfigurable Systems

Summer Institute 2006, 12 July 2006; http://gladiator.

ncsa.uiuc.edu/PDFs/rssi06/presentations/00_Duncan_Buell.pdf

[3] T. Van Court et al., Achieving High Performance

with FPGA-Based Computing, Computer, vol. 40, no. 3,

pp. 50-57, Mar. 2007, doi:10.1109/MC.2007.79

2.1.2 System Synthesis

Today, several solutions for system design are proposed and commerciali-
zed. The most common are those provided by Altera and Xilinx to promote
their FPGA devices.
The Xilinx System Generator for DSP [http ://www.xilinx.com/tools/sysgen.htm]
is a plug-in to Simulink that enables designers to develop high-performance
DSP systems for Xilinx FPGAs. Designers can design and simulate a system
using MATLAB and Simulink. The tool will then automatically generate
synthesizable Hardware Description Language (HDL) code mapped to Xi-
linx pre-optimized algorithms. However, this tool targets only DSP based
algorithms, Xilinx FPGAs and cannot handle complete SoC. Thus, it is not
really a system synthesis tool.
In the opposite, SOPC [CITATION] allows to describe a system, to synthesis
it, to programm it into a target FPGA and to upload a software application.
Nevertheless, SOPC does not provide any facilities to synthesize coproces-
sors. Users have to provide the synthesizable description with the feasible
bus interface.
In addition, Xilinx System Generator and SOPC are closed world since each
one imposes their own IPs which are not interchangeable. We can conclude

7



that the existing commercial or free tools does not coverthe whole system
synthesis process in a full automatic way. Moreover, they are bound to a
particular device family and to IPs library.

2.1.3 High Level Synthesis

High Level Synthesis translates a sequential algorithmic description and a
constraints set (area, power, frequency, ...) to a micro-architecture at Register
Transfer Level (RTL). Several academic and commercial tools are today avai-
lable. Most common tools are SPARK [HLS1], GAUT [HLS2], UGH [HLS3]
in the academic world and catapultC [HLS4], PICO [HLS5] and Cynthesizer
[HLS6] in commercial world. Despite their maturity, their usage is restrained
by :

{ They do not respect accurately the frequency constraint when they tar-
get an FPGA device. Their error is about 10 percent. This is annoying
when the generated component is integrated in a SoC since it will slow
down the hole system.

{ These tools take into account only one or few constraints simulta-
neously while realistic designs are multi-constrained. Moreover, low po-
wer consumption constraint is mandatory for embedded systems. Ho-
wever, it is not yet well handled by common synthesis tools.

{ The parallelism is extracted from initial algorithm. To get more paralle-
lism or to reduce the amout of required memory, the user must re-write
it while there is techniques as polyedric transformations to increase the
intrinsec parallelism.

{ Despite they have the same input language (C/C++), they are sensitive
to the style in which the algorithm is written. Consequently, engineering
work is required to swap from a tool to another.

{ The HLS tools are not integrated into an architecture and system ex-
ploration tool. Thus, a designer who needs to accelerate a software part
of the system, must adapt it manually to the HLS input dialect and
performs engineering work to exploit the synthesis result at the system
level.

Regarding these limitations, it is necessary to create a new tool generation
reducing the gap between the speci�cation of an hetrogenous system and its
hardware implementation.

[HLS1] SPARK universite de californie San Diego

[HLS2] GAUT UBS/Lab-STIC

[HLS3] UGH

[HLS4] catapultC Mentor

[HLS5] PICO synfora

[HLS6] Cynthesizer Forte design system

8



2.1.4 XXXpeci

-- A COMPLETER

2.2 Objectives and innovation aspects

% 2.2. OBJECTIFS ET CARACTERE AMBITIEUX/NOVATEUR DU PROJET

% (2 pages maximum)

% D�ecrire les objectifs scientifiques/techniques du projet.

% Pr�esenter l'avanc�ee scientifique attendue. Pr�eciser l'originalit�e et le caract�ere

% ambitieux du projet.

% D�etailler les verrous scientifiques et techniques �a lever par la r�ealisation du projet.

% D�ecrire �eventuellement le ou les produits finaux d�evelopp�es �a l'issue du projet

% montrant le caract�ere innovant du projet.

% Pr�esenter les r�esultats escompt�es en proposant si possible des crit�eres de r�eussite

% et d'�evaluation adapt�es au type de projet, permettant d'�evaluer les r�esultats en

% fin de projet.

% Le cas �ech�eant (programmes exigeant la pluridisciplinarit�e), d�emontrer l'articulation

% entre les disciplines scientifiques.

The objectives of COACH project are to develop a complete framework to
HPC (accelerating solutions for existing software applications) and embedded
applications (implementing an application on a low power standalone device).
The design steps are presented �gure 1.

T0

T1 T2

Process network

Application PC

Application SoC

HPC

application

Embedded

application

P
R
O
C

R
A
M

I
O

BUS

Platform

P
R
O
C

R
A
M

I
O

P
R
O
C

O
C

BUS

Platform

Application

compilation

Evaluation Evaluation

Executable

Running

Input HPC setup SoC design

Fig. 1 { COACH 
ow.

HPC setup Here the user splits the application into 2 parts : the host appli-
cation which remains on PC and the SoC application which migrates on

9



SoC. The framework provides a simulation model allowing to evaluate
the partitioning.

SoC design In this phase, The user can obtain simulators at di�erent abs-
traction levels of the SoC by giving to COACH framework a SoC des-
cription. This description consists of a process network corresponding
to the SoC application, an OS, an instance of a generic hardware plat-
form and a mapping of processes on the platform components. The
supported mapping are software (the process runs on a SoC processor),
XXXpeci (the process runs on a SoC processor enhanced with dedica-
ted instructions), and hardware (the process runs into a coprocessor
generated by HLS and plugged on the SoC bus).

Application compilation Once SoC description is validated, COACH ge-
nerates automatically an FPGA bitstream containing the hardware
platform with SoC application software and an executable containing
the host application. The user can launch the application by loading
the bitstream on FPGA and running the executable on PC.

The main scienti�c contribution of the project is to unify various synthe-
sis techniques (same input and output formats) allowing the user to swap
without engineering e�ort from one to an other and even to chain them,
for example, to run polyedric transformation before synthesis. Another ad-
vantage of this framework is to provide di�erent abstraction levels from a
single description. Finally, this description is device family independent and
its hardware implementation is automatically generated.

System design is a very complicated task and in this project we try to
simplify it as much as possible. For this purpose we have to deal with the
following scienti�c and technological barriers.

{ The main problem in HPC is the communication between the PC and
the SoC. This problem has 2 aspects. The �rst one is the e�ciency. The
second is to eliminate enginnering e�ort to implement it at di�erent
abstract levels.

{ COACH design 
ow has a top-down approach. In the such case, the
required performance of a coprocessor (run frequency, maximum cycles
for a given computation, power consumption, etc) are imposed by the
other system components. The challenge is to allow user to control
accurately the synthesis process. For instance, the run frequency must
not be a result of the RTL synthesis but a strict synthesis constraint.

{ HLS tools are sensitive to the style in which the algorithm is written. In
addition, they are are not integrated into an architecture and system
exploration tool. Consequently, engineering work is required to swap
from a tool to another, to integrate the resulting simulation model to

10



an architectural exploration tool and to synthesize the generated RTL
description.

{ Most HLS tools translate a sequential algorithm into a coprocessor
containing a single data-path and �nite state machine (FSM). In this
way, only the �ne grained parallelism is exploited (ILP parallelism).
The challenge is to identify the coarse grained parallelism and to ge-
nerate, from a sequential algorithm, coprocessor containing multiple
communicating tasks (data-paths and FSMs).

The main result is the framework. It is composed concretely of : 2 HPC
communication shemes with their implementation, 5 HLS tools (control do-
minated HLS, data dominated HLS, Coarse grained HLS, Memory optimi-
sation HLS and XXXpeci), a generic platform with SystemC CABA model
and synthesizable RTL descriptions, a design space exploration tool con�gu-
red for the former platform and one operating system (OS).
The framework fonctionality will be demonstrated on both HPC and embed-
ded SoC application examples.
For the HPC application, we provide the following simulation levels : Original
application, the splitted application (host/SoC) and the splitted application
with the SoC application as a process network.
For both HPC and embedded SoC, we provide the following simulation le-
vels : process network simulation, CABA simulation of the application with
all the processes in software in the SoC processor, CABA simulation with a
task running in a speci�c hardware for each HLS tool.
Finally, the previous simulated descriptions are synthesized and the applica-
tion is run. This is done twice one time for Altera and one time for Xilinx
FPGAs.

11


