
DSX tool specification
DSX tool specification

A) Goals and general principles1.
B) System Resources Layer2.
C) Defining the software application

C1) Task Model definition1.
C2) MWMR communication channel definition2.
C3) Synchronization barrier definition3.
C4) Synchronization lock definition4.
C5) Signal definition5.
C6) Task instanciation6.

3.

D) Defining the hardware architecture4.
E) Mapping the software on the hardware5.
F) Code generation6.

1.

A) Goals and general principles

DSX stands for Design Space eXplorer. It helps the system designer to map a multi-threaded software application
on a multi-processor hardware architecture (MP-SoC) modeled with the SoCLib components.

It supports the hardware software codesign approach, allowing the designer to define successively :

the software application structure : number of tasks and communication channels•
the hardware architecture : number of processors, number of memory banks, etc.•
the mapping of the software application on the hardware architecture•

A specific goal of DSX is to allow the system designer to control not only the placement of the tasks on the
processors, but the placement of the software objects (execution stacks, communication buffers, synchronization
locks, etc.) on the memory banks. In shared memory multi-processors architectures with several physically
distributed memory banks, such control is mandatory to optimize both the performances and the power
consumption.

The two targeted application domains are the telecommunication applications (where the tasks are handling packets
or packet descriptors), and multi-media applications (where the tasks are handling audio or video streams).

The general principles of the DSX tool are the following:

The coarse grain parallelism of the software application must be statically defined as a Task &
Communications Graph (TCG). The number of tasks, and the communication channels between tasks
should not change during execution.

•

The software tasks are supposed to be written in C or C++, but - for portability reasons - the tasks must use
an abstract System Resource Layer (SRL) API to access the communication and synchronizations
resources.

•

Each task in the TCG can be implemented as a software task (software running on an embedded processor),
or can be implemented as an hardware task, (running as a dedicated hardware coprocessor).

•

DSX allows the programmer to use unprotected shared memory spaces, but the prefered inter-tasks
communication mechanism use the MWMR middleware. The MWMR (Multi-Writer, Multi-Reader)
channels, are implemented as software FIFOs and can be shared by software tasks, and by hardware tasks.

•

DSX provides classical synchronization mechanisms such as barriers and locks, but inter-task
synchronisation is mainly done through the data availability in the MWMR channels.

•

DSX tool specification 1

The target hardware architecture is a shared memory multi-processor system on chip (MP-SoC) using the
SoCLib library of IP cores. But - in order to validate the multi-threaded software application - DSX is able
to generate an executable binary code for a standard POSIX workstation.

•

DSX supports the POSIX compliant ?Mutek OS kernel for embedded MPSoCs•
Finally, DSX defines the DSX/L language, based on PYTHON, that allows the system designer to describe
in a single file the Task & Communication Graph (TCG), the MP-SoC hardware architecture, and various
mapping of the TCG on the MP-Soc architecture.

•

The DSX/L script execution generates the binary code executable on the workstation, the SystemC model of the top
cell correspondint to the MP-SoC architecture, and the binary code that will be uploaded in the MP-Soc embedded
memory.

B) System Resources Layer

We want to map the multi-threaded software application on several hardware platforms, without any modification
of the task code. One important platform is a POSIX compliant workstation, as we want to validate the
multi-threaded software application on a workstation before starting the mapping on the MPSoC architecture.

DSX defines a system Ressource Layer API (SRL), that is an abstraction of the synchronization and
communication services provided by the various target platforms. The SRL API helps the C programmer to
distinguish the embedded application code from the system code used for inter-tasks communications and
synchronizations.

Communications : blocking & non-blocking Read & Write access to a MWMR channel

void srl_mwmr_read(srl_mwmr_t, void * , size_t) ;
void srl_mwmr_write(srl_mwmr_t, void * , size_t) ;

size_t srl_mwmr_try_read(srl_mwmr_t, void * , size_t) ;
size_t srl_mwmr_try_write(srl_mwmr_t, void * , size_t) ;

void srl_mwmr_flush(srl_mwmr_t) ;

•

Synchronization barrier

void srl_barrier_wait(srl_barrier_t) ;

•

taking and releasing a lock

srl_loock_lock(srl_lock_t) ;
srl_lock_unlock(srl_lock_t) ;

•

accessing a shared memory space (address and size)

void* srl_memspace_addr(srl_memspace_t) ;
size_t srl_memspace_size(srl_memspace_t) ;

•

Three platforms are presently supported :

Any Linux (or Unix) workstation supporting the POSIX threads,•
MP-SoC architecture using the MUTEK/D operation system,•
MP-SoC architecture using the MUTEK/S operating system,•

MUTEK/D is an embedded, POSIX compliant, distributed, operating system for MP-SoCs?, while MUTEK/S is an
optimized version: the performances are improved, and the memory footprint is reduced, at the cost of loosing the
POSIX compatibility.

A) Goals and general principles 2

https://www-asim.lip6.fr/trac/mutekh

C) Defining the software application

This chapter describes the DSX/L constructs used to define the Task & Communication Graph structure. The TCG
is a bipartite graph: the two types of nodes are the tasks and the communication channels. The following figure
describes the TCG corresponding to an MJPEG decoder application. The two TG & RAMDAC tasks will be
implemented as hardware coprocessors : the TG component implements a wire-less receiver, and the RAMDAC
component is a graphic display controller. The 5 other tasks can be implemented as software tasks or as hardware
tasks. In this example, all MWMR communication channels have one single producer, and one single consumer,
which is frequent for stream oriented multi-media applications.

C1) Task Model definition

As a software application can instanciate several instances of the same task, we must distinguish the task, and the
task model. A task model defines the code associated to the task, and the task interface (corresponding to the
system resources used by the task : MWMR communications channels, synchronization barriers, locks, and
memspaces).

Task_model = Task('model_name',
 infifos = ['inport_name', ...] ,
 outfifos = ['outport_name', ...] ,
 locks = ['lock_name', ...] ,
 barriers = ['barrier_name', ...] ,
 memspaces = ['memspace_name', ...] ,
 signals = ['signal_name', ...] ,
 impls = [SwTask('func', stack_size = 1024 , sources = ['func.c'])

I a task does not use a given type of resource, the corresponding parameter can be skipped.

C2) MWMR communication channel definition

C3) Synchronization barrier definition

C4) Synchronization lock definition

C5) Signal definition

C6) Task instanciation

D) Defining the hardware architecture

E) Mapping the software on the hardware

F) Code generation

C) Defining the software application 3

