
What is it ?
A Driver is something taking a Ware and makeing somthing useful with it (typically generating source).

A Driver may be helped by NodeDrivers?, thus having a decentralized generation of products.

Services
Through class (ie even with no instance):

Keeps a list of known NodeDrivers? and the associated node types. (see #Registering)•

Through instances:

Has some parameters (output directory, optional featues, ...) chosen at instanciation•
Keeps silent until code generation is asked (it may never be asked)•

This way, we may generate with the same driver class (eg generate !SystemC/Caba code) different Wares, with
different options; or the other way around, generate the same Wares many times through different backends.

Registering
With method register() a NodeDriver? can register as a generation class for a Node. API between a Driver
and its associated NodeDrivers? is ad-hoc: the Driver's needs and design rules.

A base NodeDriver? valid for a given Driver should be given, with basic functionalities, doing a no-op for the code.

Registration usage
Let's have the following class hierarchies:

Node
 MyWareTypeNode
 MyWareWidgetNode
 MyWareThingieNode
 MyWareOtherNode

Let's have the following drivers:

NodeDriver
 MyDriverNoopDriver
 MyWareWidgetNodeDriver
 MyWareOtherNodeDriver

Now, if we register in our new driver called MyDriver:

default registration
MyDriver.register(MyWareTypeNode, MyWareWidgetNoopDriver)

specialized drivers
MyDriver.register(MyWareWidgetNode, MyWareWidgetNodeDriver)
MyDriver.register(MyWareOtherNode, MyWareOtherNodeDriver)

Registration usage 1

MyWareThingieNode will be driven by MyWareWidgetNoopDriver.

This kind of walk through inherances also works with more childs and classes

Registration usage 2

