Whatis it ?

A Driver is something taking a Ware and makeing somthing useful with it (typically generating source).

A Driver may be helped by NodeDrivers?, thus having a decentralized generation of products.

Services

Through class (ie even with no instance):
e Keeps a list of known NodeDrivers? and the associated node types. (see #Registering)
Through instances:

® Has some parameters (output directory, optional featues, ...) chosen at instanciation
e Keeps silent until code generation is asked (it may never be asked)

This way, we may generate with the same driver class (eg generate SystemC/Caba code) different Wares, with
different options; or the other way around, generate the same Wares many times through different backends.

Registering

With method register () a NodeDriver? can register as a generation class for a Node. API between a Driver
and its associated NodeDrivers? is ad-hoc: the Driver's needs and design rules.

A base NodeDriver? valid for a given Driver should be given, with basic functionalities, doing a no-op for the code.

Registration usage

Let's have the following class hierarchies:

Node
MyWareTypeNode
MyWareWidgetNode
MyWareThingieNode
MyWareOtherNode

Let's have the following drivers:

NodeDriver
MyDriverNoopDriver
MyWareWidgetNodeDriver
MyWareOtherNodeDriver

Now, if we register in our new driver called MyDriver:

default registration
MyDriver.register (MyWareTypeNode, MyWareWidgetNoopDriver)

specialized drivers

MyDriver.register (MyWareWidgetNode, MyWareWidgetNodeDriver)
MyDriver.register (MyWareOtherNode, MyWareOtherNodeDriver)

Registration usage 1

MyWareThingieNode will be driven by MyWareWidgetNoopDriver.

This kind of walk through inherances also works with more childs and classes

Registration usage

