
Srl API
This Chapter describe the use of the SRL API in DSX-VM (inspired from DSX SRL API).

The Srl API is an abstraction layer that provides the software programmer an easy acces to several software
resources.

Thanks to the Srl (System Ressource Layer) API, the same code can be compiled and executed on several platforms
such as

a Linux/Posix workstation•
an MP-SoC architecture running the Mutek OS.•

The code of the tasks is supposed to be written in C.

Mwmr Communication Channels

srl_mwmr_t channel = SRL_GET_MWMR(port_name) defines a local variable associated to a
MWMR channel acces port. The port_name argument corresponds to the port name defined in the task
model defined in the DSX/L description.

•

srl_mwmr_read(channel, local_buffer, size) reads size bytes from the MWMR channel
to the local buffer. The local_buffer argument is a void*. The size argument must be a multiple of the
channel width, and the the channel width must be a multiple of 4 bytes.

•

srl_mwmr_write(channel, local_buffer, size) writes size bytes from the local buffer to
the MWMR channel. The local_buffer argument is a void*. The size argument must be a multiple of the
channel width, and the channel width must be a multiple of 4 bytes.

•

Locks

srl_lock_t lock = SRL_GET_LOCK(port_name) defines a local variable associated to a lock.
The port_name argument corresponds to the port name defined in the task model defined in the DSX/L
description.

•

srl_lock_lock(lock) takes a lock, waiting if necessary•
srl_lock_unlock(lock) releases the lock•

Barriers

srl_barrier_t barrier = SRL_GET_BARRIER(port_name) defines a local variable
associated to a barrier. The port_name argument corresponds to the port name defined in the task model
defined in the DSX/L description.

•

srl_barrier_wait(barrier) waits for a barrier-global synchronization•

Logging

Log API let you define several message levels. Levels allow you to keep the debug code in the source, and only
compile it when needed.

Srl API 1

https://www-asim.lip6.fr/trac/dsx/wiki/SrlApi

In order, levels are:

NONE•
TRACE•
DEBUG•
MAX•

When writing your software, you decide what level the message is for. When compiling or running you software,
you decide what minimal level your code must have to be printed.

srl_log(level, "message") prints a message•
srl_log_printf(level, "message_with_format", arguments...) prints a printf-like
message

•

Arguments in printf-like version may be not evaluated if level is not sufficient. Therefore you MUST NOT put
expressions with side effects in the parameter list. ie do not do this:

srl_log_printf(DEBUG, "i=%d\n", i++);

Other services

srl_busy_cycles(N) tells the simulation environment the simulation should run at least N cycles
while in this call. This makes sense only for virtually synthetised tasks, otherwise, this call is a noop.

•

srl_assert(cond) checks if cond is true, and fatally fails otherwise•
srl_abort() make the application (whatever the backend) abort now•
srl_exit() a way to correctly exit a task•

Instrumentation services

srl_cycle_count() returns the current cycle (most useful in a simulation context). On Posix, this
returns the current millisecond since EPOCH (modulo 132).

•

Logging 2

