
DSX has some support for flattened device trees.

DSX can convert:

a given flattened device tree to a soclib caba platform,•
a given soclib caba platform to a flattened device tree.•

As all the needed data is not present in the components metadata, these conversions involve custom translator code.
Therefore, support for translation is limited to known modules, i.e. modules having an associated handler.

From a platform to a device tree
For a given platform, we may extract the corresponding device tree as seen for a given mapping table (a device tree
can represent only one address-space):

Import converter and built-in handlers:

from dsx.contrib.dts_platform.platform_to_dts import PlatformToDts
import dsx.contrib.dts_platform.platform_handlers

Convert the platform, for a given mapping table:

dtsgen = PlatformToDts(arch, mapping_table)

Then we can retrieve the device tree

device_tree = dtsgen.create_device_tree()

This device tree itself can be serialized to different formats. There are drivers for this task

Device tree serialization as ascii source (dts)

Import the driver

from dsx.device_tree.dts import Driver

Call it for the device tree:

driver = Driver(
 outdir = '.',
 parent = None,
 output_file = "my_platform.dts",
)

device_tree.generate(driver)

Device tree serialization as device tree blob (dtb)

Import the driver

from dsx.device_tree.dtb import Driver

Call it for the device tree:

From a platform to a device tree 1

driver = Driver(
 outdir = '.',
 parent = None,
 output_file = "my_platform.dtb",
)

device_tree.generate(driver)

From a device tree to a platform
Likewise, you may convert a device tree source or blob to a platform.

The architecture generated will be flat around a VGMN.

Programmatically

import modules

from dsx.contrib.dts_platform.dts_to_platform import DtsToPlatform
import dsx.contrib.dts_platform.handlers
from soclib.platform import PfDriver

Parse a dts and retrieve corresponding platform

pgen = DtsToPlatform("test_3.dts", binary = 'kernel-soclib-mips.out')
pf = pgen.create_caba_platform()

Generate the simulator, as usual:

pf.generate(PfDriver("hard"))

With a command-line one-liner

This tool can even create a netlist with GDB or memchecker-enabled platforms

 $ python -m dsx.contrib.dts_platform.converter -h
Usage: converter.py [-o output_dir] [-b binary] file.dts

Options:
 -h, --help show this help message and exit
 -o OUTPUT_DIR Output directory
 -b BINARY Binary kernel to load
 --gdb Whether to use GDB server
 --memchecker Whether to use Memchecker

For instance:

 $ python -m dsx.contrib.dts_platform.converter -o platform -b kernel.out --gdb my_platform.dts

From a device tree to a platform 2

