
TP4 : Exécution sur architecture multi-cluster
0. Objectif1.
1. Parallélisation du TCG2.
2. Architecture matérielle multi-processeur clusterisée3.
3. Déploiement et exploration architecturale4.
4. Compte-Rendu5.
Suite6.

TP Précédent: MjpegCourse/Multipro

0. Objectif
On cherche dans ce quatrième TP à augmenter encore le débit de la chaîne de décompression, pour permettre - par
exemple - de traîter des images de plus grandes dimensions, tout en respectant la fréquence video. Cette
augmentation de débit peut être obtenue en augmentant la fréquence d'horloge, mais cette approche a évidemment
des limites. On essayera donc plutôt d'augmenter le parallélisme de traitement du flux MJPEG.

Pour augmenter le parallélisme, il ne suffit pas d'augmenter le nombre de processeurs dans l'architecture matérielle,
il faut également augmenter le nombre de tâches de l'application logicielle, ce qui impose de modifier la structure
du TCG.

La première partie du TP vise la définition d'un graphe de tâches multi-pipeline.•
La seconde partie du TP porte sur la définition d'une architecture matérielle multi-clusters.•
La troisième partie du TP analyse l'impact du placement des canaux de communication sur les bancs
mémoire dans les architectures NUMA (Non Uniform Memory Access).

•

Commencez par créer un répertoire de travail tp4, et recopiez dans ce répertoire les différents fichiers et/ou
répertoires sources contenus dans le répertoire tp3.

1. Parallélisation du TCG
Le TCG défini dans le TP1 et re-utilisé dans les TP2 et TP3 comportait 7 tâches. Il exploitait un parallélisme de
type macro-pipeline. Différentes tâches traitent différents blocs de la même image: Toutes les tâches s'exécutent en
parallèle, mais sur des blocs différents de l'image. Il est difficile d'augmenter le nombre d'étages de ce
macro-pipeline, car les tâches les plus coûteuses en temps de calcul (VLD et IDCT) ne se découpent pas facilement
en sous-tâches.

On va donc exploiter un autre type de parallélisme en utilisant deux pipelines de décompression. Chaque pipeline
traite une image complête. On introduit une tâche chargée de distribuer aternativement aux deux pipe-line le flux
MJPEG. Cette nouvelle tâche split se situera entre les tâches tg et demux. La tâche libu doit être modifiée
pour récupérer alternativement les images décompressées provenant des deux pipelines, avant de les envoyer vers
la tâche ramdac.

Modifiez la structure du TCG dans la description DSX de l'application. Vous devez introduire un nouveau modèle
de tâche pour la tâche split, et modifiier le modèle de la tâche libu. Il faut ensuite modifier la topologie du
TCG en définissant explicitement toutes les intances de tâches et tous les canaux de communication nécessaires.

Le code de la tâche split doit analyser octet par octet le flux MJPEG, pour détecter le marqueur de début d'image

1. Parallélisation du TCG 1

(SOI = 0xffd8), de façon à l'aiguiller vers le bon canal de sortie.

Le pseudo core correspondant à l'algorithme de split est:

canal de sortie = le premier

toujours:
 b = lire un octet
 si b == 0xff
 m = lire un octet
 si m == 0xd8
 remplir la sortie courante de 0xff
 envoyer le bloc
 changer de canal de sortie
 ecrire b dans la sortie
 ecrire m dans la sortie
 retourner au debut de la boucle
 ecrire b dans la sortie

Pour valider fonctionnellement cette nouvelle description de l'application logicielle, déployez-la sur station de
travail POSIX. vous devez voir les mêmes images qu'avant, dans le même ordre.

2. Architecture matérielle multi-processeur
clusterisée
Pour supporter la charge induite par ces nouvelles tâches, il faut augmenter le nombre d'unités de traitement
(processeurs ou coprocesseurs). Pour éviter que l'accès à la mémoire devienne un goulot d'étranglement, il est
également souhaitable d'augmenter le nombre de bancs mémoire physique, de façon à répartir les données. Et
lorsque le nombre d'entités communicantes (initiateurs ou cibles) augmente, il est utile de structurer l'architecture
en sous-systèmes.

Cette structuration a des justifications fonctionnelles:

On cherche à regrouper dans un même sous-sytème les différents composants matériels qui réalisent une
même partie de l'application, et communiquent fortement entre eux.

•

Elle facilite également la réalisation matérielle : Chaque sous-système pourra être implanté physiquement
dans un même domaine synchrone, et utiliser sa propre horloge, conformément au principe GALS
(Globally Asynchronous, Locally Synchronous).

•

2. Architecture matérielle multi-processeur clusterisée 2

Chaque sous-système constitue un cluster, et contient des processeurs, de la mémoire, et dispose de son propre
mécanisme d'interconnexion local.

Les différents clusters sont interconnectés entre eux par une micro-réseau à interface VCI/OCB, qui pourra être
modélisé par un composant Vgmn.

On utilisera comme mécanisme d'interconnexion interne à chaque cluster le composant LocalCrossbar (voir
SoclibComponents). Ce composant matériel est un petit crossbar, qui possède un nombre variable de ports
initiateur et cible permettant de connecter les composants matériels appartenant au cluster. Il possède également
deux ports initiateur (initiator_to_up) et cible (target_to_up) permettant l'accès au micro-réseau.

Cette structuration aboutit donc à l'utilisation d'un mécanisme d'interconnexion à deux niveaux (interconnect
global: Vgmn, et interconnect local: LocalCrossbar), bien que tous les composants matériels (initiateurs et
cibles) continuent à partager le même espace d'adressage.

Pour faciliter l'exploration architecturale, on souhaite définir une architecture générique dont les paramètres sont:

la latence minimale du Vgmn•
le nombre de clusters et, pour chaque cluster,

le nombre de bancs mémoire♦
le nombre de processeurs♦

•

Utilisez la définition de l'architecture ClusteredNoirqMulti.

3. Déploiement et exploration architecturale
Modifiez la description DSX de l'application MJPEG:

Remplacez l'instanciation de VgmnNoirqMulti par

archi = ClusteredNoirqMulti(cpus = [1, 2, 2, 1],
 rams = [1, 1, 1, 1],
 min_latency = 10)

•

Ajoutez la création des coprocesseurs tg et ramdac sur le premier et le dernier cluster respectivement.•

La structure de l'application logicielle (TCG), et l'architecture matérielle étant définies, l'exploration architecturale
consiste donc à analyser l'influence du placement des objets logiciels sur les composants matériels. On s'intéresse
tout particulièrement au placement des canaux de communication sur les bancs mémoire physiques.

Dans ce type d'architecture multi-clusters, les temps d'accès à la mémoire sont très différents, suivant qu'un
processeur adresse la mémoire locale au sous-système, ou à un autre sous-système. On parle d'architecture NUMA
(Non Uniform Memory Access).

Refaites le placement des canaux de communication de manière intelligente. Essayez ensuite de varier sur le
placement de l'état par rapport au placement du canal, de placer le canal plutôt du côté de la consommation, ou de
la production, ...

Redéployez les canaux MWMR et les tâches sur les rams aux noms de la forme [uc]ram<no
cluster>_<no>

•

 Combien faut-il de cycles pour décompresser 25 images?

3. Déploiement et exploration architecturale 3

 Essayez d'en extraire un critère de performance en fonction des placements.
Pour cette question, si vous trouvez la simulation trop longue pour 25 images, ne vous basez pas sur la simulation
pour une image, car le pipeline de traitement est vide au départ. Essayez de prendre au moins 7 images, et d'ignorer
le temps de remplissage (2 premières images).

4. Compte-Rendu
Comme pour les TP précédents, vous rendrez une archive contenant:

$ tar tzf binome0_binome1.tar.gz
tp4/
tp4/rapport.pdf
tp4/mjpeg/
tp4/mjpeg/mjpeg.py
tp4/mjpeg/src/
tp4/mjpeg/src/iqzz/iqzz.c
tp4/mjpeg/src/iqzz/iqzz.task
tp4/mjpeg/src/libu/libu.c
tp4/mjpeg/src/libu/libu.task
tp4/mjpeg/src/split/split.c
tp4/mjpeg/src/split/split.task

Cette archive devra être livrée avant le jeudi 13 janvier 2011, 18h00 à [MailAsim:joel.porquet Joël Porquet]

Suite
TP Suivant: MjpegCourse/Coproc

Suite 4

