TP4 : Exécution sur architecture multi-cluster

F

1. 0. Objectif

2. 1. Parallélisation du TCG

3. 2. Architecture matérielle multi-processeur clusterisée
4. 3. Déploiement et exploration architecturale
5.4.C
6.

Aww»—*

ompte -Rendu
uit

(n

TP Précédent: MjpegCourse/Multipro

0. Objectif

On cherche dans ce quatrieme TP a augmenter encore le débit de la chaine de décompression, pour permettre - par
exemple - de traiter des images de plus grandes dimensions, tout en respectant la fréquence video. Cette
augmentation de débit peut étre obtenue en augmentant la fréquence d'horloge, mais cette approche a évidemment
des limites. On essayera donc plutot d'augmenter le parallélisme de traitement du flux MJPEG.

Pour augmenter le parallélisme, il ne suffit pas d'augmenter le nombre de processeurs dans l'architecture matérielle,
il faut également augmenter le nombre de taches de 1'application logicielle, ce qui impose de modifier la structure
du TCG.

e La premiere partie du TP vise la définition d'un graphe de taches multi-pipeline.

® La seconde partie du TP porte sur la définition d'une architecture matérielle multi-clusters.

e La troisieme partie du TP analyse 1'impact du placement des canaux de communication sur les bancs
mémoire dans les architectures NUMA (Non Uniform Memory Access).

Commencez par créer un répertoire de travail tp4, et recopiez dans ce répertoire les différents fichiers et/ou
répertoires sources contenus dans le répertoire tp3.

1. Parallélisation du TCG

Le TCG défini dans le TP1 et re-utilisé dans les TP2 et TP3 comportait 7 tches. Il exploitait un parallélisme de
type macro-pipeline. Différentes taches traitent différents blocs de la méme image: Toutes les taches s'exécutent en
parallele, mais sur des blocs différents de 1'image. Il est difficile d'augmenter le nombre d'étages de ce
macro-pipeline, car les tiches les plus cofiteuses en temps de calcul (VLD et IDCT) ne se découpent pas facilement
en sous-taches.

0

On va donc exploiter un autre type de parallélisme en utilisant deux pipelines de décompression. Chaque pipeline
traite une image compléte. On introduit une tache chargée de distribuer aternativement aux deux pipe-line le flux
MIJPEG. Cette nouvelle tiche split se situera entre les tiches t g et demux. La tiche 1ibu doit étre modifiée
pour récupérer alternativement les images décompressées provenant des deux pipelines, avant de les envoyer vers
la tiche ramdac.

Modifiez la structure du TCG dans la description DSX de l'application. Vous devez introduire un nouveau modele
de tache pour la tiche split, et modifiier le modele de la tiche 1ibu. Il faut ensuite modifier la topologie du

TCG en définissant explicitement toutes les intances de tiches et tous les canaux de communication nécessaires.

Le code de la tiche split doit analyser octet par octet le flux MJPEG, pour détecter le marqueur de début d'image

1. Parallélisation du TCG 1

(SOI = 0xffd8), de fagon a l'aiguiller vers le bon canal de sortie.

Le pseudo core correspondant a l'algorithme de split est:

canal de sortie = le premier

toujours:
b = lire un octet
si b == 0Oxff
m = lire un octet
si m == 0xd8
remplir la sortie courante de Oxff
envoyer le bloc
changer de canal de sortie
ecrire b dans la sortie
ecrire m dans la sortie
retourner au debut de la boucle
ecrire b dans la sortie

Pour valider fonctionnellement cette nouvelle description de 1'application logicielle, déployez-la sur station de
travail POSIX. vous devez voir les mémes images qu'avant, dans le méme ordre.

2. Architecture matérielle multi-processeur
clusterisée

Pour supporter la charge induite par ces nouvelles tiches, il faut augmenter le nombre d'unités de traitement
(processeurs ou coprocesseurs). Pour éviter que I'acceés a la mémoire devienne un goulot d'étranglement, il est
également souhaitable d'augmenter le nombre de bancs mémoire physique, de fagon a répartir les données. Et
lorsque le nombre d'entités communicantes (initiateurs ou cibles) augmente, il est utile de structurer l'architecture
en sous-systemes.

Cette structuration a des justifications fonctionnelles:

® On cherche a regrouper dans un méme sous-syteme les différents composants matériels qui réalisent une
méme partie de l'application, et communiquent fortement entre eux.

¢ Elle facilite également la réalisation matérielle : Chaque sous-systeme pourra étre implanté physiquement
dans un méme domaine synchrone, et utiliser sa propre horloge, conformément au principe GALS
(Globally Asynchronous, Locally Synchronous).

1
L 1 . . .
- TE. || Ram || Locks il) Wil o | PR |
Muwmr | | Xoache| [Noache Xoache|
——q--! [[[[[[[
LocalCrosshar LocalCrogshar
[1 [1
¥ ShIY
[1 [1
LocalCrossbar LocalCrossbar
| | | | | | | e
Xcar:.h.cl Mcachs |Xr.:ar;l:m i bwmr
I
Mire || et Mipe Mipe s || e iIlundﬁffRf#y

2. Architecture matérielle multi-processeur clusterisée

Chaque sous-systéme constitue un cluster, et contient des processeurs, de la mémoire, et dispose de son propre
mécanisme d'interconnexion local.

Les différents clusters sont interconnectés entre eux par une micro-réseau a interface VCI/OCB, qui pourra étre
modélisé par un composant Vgmn.

On utilisera comme mécanisme d'interconnexion interne a chaque cluster le composant LocalCrossbar (voir
SoclibComponents). Ce composant matériel est un petit crossbar, qui possede un nombre variable de ports
initiateur et cible permettant de connecter les composants matériels appartenant au cluster. Il possede également
deux ports initiateur (initiator_to_up) et cible (target_to_up) permettant 'acces au micro-réseau.

Cette structuration aboutit donc a I'utilisation d'un mécanisme d'interconnexion a deux niveaux (interconnect
global: Vgmn, et interconnect local: LocalCrossbar), bien que tous les composants matériels (initiateurs et
cibles) continuent a partager le méme espace d'adressage.

Pour faciliter 1'exploration architecturale, on souhaite définir une architecture générique dont les parametres sont:
¢]a latence minimale du Vgmn
¢ le nombre de clusters et, pour chaque cluster,
¢ le nombre de bancs mémoire

¢ le nombre de processeurs

Utilisez la définition de l'architecture ClusteredNoirgMulti.

3. Déploiement et exploration architecturale
Modifiez la description DSX de 'application MJPEG:

® Remplacez l'instanciation de VgmnNoirgMulti par

archi = ClusteredNoirgMulti(cpus = [1, 2, 2, 1],
rams = [1, 1, 1, 1],
min_latency = 10)
e Ajoutez la création des coprocesseurs tg et ramdac sur le premier et le dernier cluster respectivement.

La structure de l'application logicielle (TCG), et l'architecture matérielle étant définies, 1'exploration architecturale
consiste donc a analyser l'influence du placement des objets logiciels sur les composants matériels. On s'intéresse
tout particulierement au placement des canaux de communication sur les bancs mémoire physiques.

Dans ce type d'architecture multi-clusters, les temps d'acces a la mémoire sont tres différents, suivant qu'un
processeur adresse la mémoire locale au sous-systéme, ou a un autre sous-systeéme. On parle d'architecture NUMA
(Non Uniform Memory Access).

Refaites le placement des canaux de communication de maniere intelligente. Essayez ensuite de varier sur le
placement de I'état par rapport au placement du canal, de placer le canal plut6t du coté de la consommation, ou de

la production, ...

® Redéployez les canaux MWMR et les taches sur les rams aux noms de la forme [uc] ram<no
cluster>_<no>

Combien faut-il de cycles pour décompresser 25 images?

3. Déploiement et exploration architecturale

Essayez d'en extraire un critere de performance en fonction des placements.

Pour cette question, si vous trouvez la simulation trop longue pour 25 images, ne vous basez pas sur la simulation
pour une image, car le pipeline de traitement est vide au départ. Essayez de prendre au moins 7 images, et d'ignorer
le temps de remplissage (2 premieéres images).

4. Compte-Rendu

Comme pour les TP précédents, vous rendrez une archive contenant:

$ tar tzf binomelO_binomel.tar.gz
tp4d/

tpd/rapport.pdf

tpd/mipeg/

tpd/mjpeg/mjipeqg.py
tpd/mipeg/src/
tpd/mjpeg/src/iqzz/iqzz.c
tpd4/mjpeg/src/iqzz/iqgzz.task
tp4/mjpeg/src/libu/libu.c
tpd4/mjpeg/src/libu/libu.task
tpd/mjpeg/src/split/split.c
tpd/mijpeg/src/split/split.task

Cette archive devra étre livrée avant le jeudi 13 janvier 2011, 18h00 a [MailAsim:joel.porquet Jo€l Porquet]

Suite

TP Suivant: MjpegCourse/Coproc

Suite 4

