Here we will explain how to create an hardware version of a task, writing its SocLib equivalent model.
For instance in the explaination of the process, we'll write a IDCT (inverse discrete cosine transform) coprocessor.
¢ It handles packets of 64 values, representing a block of 8*8 coefficients

e |t has one input and one output fifo
¢ It handles 16-bit values

Coprocessor

First we'll write the coprocessor in Caba SystemC?.

Declaration for SocLib code generation

We have to declare this component to DSX:

class HwIdct (MwmrCoproc) :
def _ _init_ (self, name, **d):
MwmrCoproc.__init__ (self, name, ['input'], ['output'], **d)

And register a Caba driver for this component:

Heritage from MwmrCoprocCabaDriver is important
class idctgen (MwmrCoprocCabaDriver) :
Here goal is to map between TaskModel fifo names and actual component's fifos

namemap = {'output':'OUT', 'input':'IN'}

For all below, see [1]

headers = 'hw_components/hw_idct.h',

def _ _init_ (self, node):
MwmrCoprocCabaDriver.__init__ (self, node)
self.plugmap|['output'] = "OUT"
self.plugmap['input'] = "IN"

def genType (self, driver):
return 'HW_IDCT'
def genDecl (self, driver):
return '("%$s") '$%(self.node.name)
Caba.register (HwIdct, idctgen)

Notes:

1. CabaDriver?

Task declaration

idct = TaskModel (

'idet',
infifos = ['input'],
outfifos = ['output' 1,
impl = [SwTask('idct',
stack_size = 1024,
sources = ['src/idct.c']),

HwTask (HwIdct)
1)

Coprocessor

That's all

Now we can map this coprocessor as an hardware task

That's all

